You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

xp_median_preimage.py 75 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Tue Jan 14 15:39:29 2020
  5. @author: ljia
  6. """
  7. import multiprocessing
  8. import functools
  9. from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
  10. from gklearn.preimage.utils import generate_median_preimages_by_class
  11. from gklearn.utils import compute_gram_matrices_by_class
  12. def xp_median_preimage_12_1():
  13. """xp 12_1: PAH, StructuralSP, using NON_SYMBOLIC, unlabeled.
  14. """
  15. # set parameters.
  16. ds_name = 'PAH' #
  17. mpg_options = {'fit_method': 'k-graphs',
  18. 'init_ecc': [4, 4, 0, 1, 1, 0], #
  19. 'ds_name': ds_name,
  20. 'parallel': True, # False
  21. 'time_limit_in_sec': 0,
  22. 'max_itrs': 100, #
  23. 'max_itrs_without_update': 3,
  24. 'epsilon_residual': 0.01,
  25. 'epsilon_ec': 0.1,
  26. 'verbose': 2}
  27. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  28. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  29. kernel_options = {'name': 'StructuralSP',
  30. 'edge_weight': None,
  31. 'node_kernels': sub_kernels,
  32. 'edge_kernels': sub_kernels,
  33. 'compute_method': 'naive',
  34. 'parallel': 'imap_unordered',
  35. # 'parallel': None,
  36. 'n_jobs': multiprocessing.cpu_count(),
  37. 'normalize': True,
  38. 'verbose': 2}
  39. ged_options = {'method': 'IPFP',
  40. 'initialization_method': 'RANDOM', # 'NODE'
  41. 'initial_solutions': 10, # 1
  42. 'edit_cost': 'NON_SYMBOLIC', #
  43. 'attr_distance': 'euclidean',
  44. 'ratio_runs_from_initial_solutions': 1,
  45. 'threads': multiprocessing.cpu_count(),
  46. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  47. mge_options = {'init_type': 'MEDOID',
  48. 'random_inits': 10,
  49. 'time_limit': 600,
  50. 'verbose': 2,
  51. 'refine': False}
  52. save_results = True
  53. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
  54. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  55. edge_required = False #
  56. # print settings.
  57. print('parameters:')
  58. print('dataset name:', ds_name)
  59. print('mpg_options:', mpg_options)
  60. print('kernel_options:', kernel_options)
  61. print('ged_options:', ged_options)
  62. print('mge_options:', mge_options)
  63. print('save_results:', save_results)
  64. print('irrelevant_labels:', irrelevant_labels)
  65. print()
  66. # generate preimages.
  67. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  68. print('\n-------------------------------------')
  69. print('fit method:', fit_method, '\n')
  70. mpg_options['fit_method'] = fit_method
  71. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  72. def xp_median_preimage_12_2():
  73. """xp 12_2: PAH, PathUpToH, using CONSTANT, unlabeled.
  74. """
  75. # set parameters.
  76. ds_name = 'PAH' #
  77. mpg_options = {'fit_method': 'k-graphs',
  78. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  79. 'ds_name': ds_name,
  80. 'parallel': True, # False
  81. 'time_limit_in_sec': 0,
  82. 'max_itrs': 100, #
  83. 'max_itrs_without_update': 3,
  84. 'epsilon_residual': 0.01,
  85. 'epsilon_ec': 0.1,
  86. 'verbose': 2}
  87. kernel_options = {'name': 'PathUpToH',
  88. 'depth': 1, #
  89. 'k_func': 'MinMax', #
  90. 'compute_method': 'trie',
  91. 'parallel': 'imap_unordered',
  92. # 'parallel': None,
  93. 'n_jobs': multiprocessing.cpu_count(),
  94. 'normalize': True,
  95. 'verbose': 2}
  96. ged_options = {'method': 'IPFP',
  97. 'initialization_method': 'RANDOM', # 'NODE'
  98. 'initial_solutions': 10, # 1
  99. 'edit_cost': 'CONSTANT', #
  100. 'attr_distance': 'euclidean',
  101. 'ratio_runs_from_initial_solutions': 1,
  102. 'threads': multiprocessing.cpu_count(),
  103. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  104. mge_options = {'init_type': 'MEDOID',
  105. 'random_inits': 10,
  106. 'time_limit': 600,
  107. 'verbose': 2,
  108. 'refine': False}
  109. save_results = True
  110. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
  111. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  112. edge_required = False #
  113. # print settings.
  114. print('parameters:')
  115. print('dataset name:', ds_name)
  116. print('mpg_options:', mpg_options)
  117. print('kernel_options:', kernel_options)
  118. print('ged_options:', ged_options)
  119. print('mge_options:', mge_options)
  120. print('save_results:', save_results)
  121. print('irrelevant_labels:', irrelevant_labels)
  122. print()
  123. # generate preimages.
  124. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  125. print('\n-------------------------------------')
  126. print('fit method:', fit_method, '\n')
  127. mpg_options['fit_method'] = fit_method
  128. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  129. def xp_median_preimage_12_3():
  130. """xp 12_3: PAH, Treelet, using CONSTANT, unlabeled.
  131. """
  132. from gklearn.utils.kernels import gaussiankernel
  133. # set parameters.
  134. ds_name = 'PAH' #
  135. mpg_options = {'fit_method': 'k-graphs',
  136. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  137. 'ds_name': ds_name,
  138. 'parallel': True, # False
  139. 'time_limit_in_sec': 0,
  140. 'max_itrs': 100, #
  141. 'max_itrs_without_update': 3,
  142. 'epsilon_residual': 0.01,
  143. 'epsilon_ec': 0.1,
  144. 'verbose': 2}
  145. pkernel = functools.partial(gaussiankernel, gamma=None) # @todo
  146. kernel_options = {'name': 'Treelet', #
  147. 'sub_kernel': pkernel,
  148. 'parallel': 'imap_unordered',
  149. # 'parallel': None,
  150. 'n_jobs': multiprocessing.cpu_count(),
  151. 'normalize': True,
  152. 'verbose': 2}
  153. ged_options = {'method': 'IPFP',
  154. 'initialization_method': 'RANDOM', # 'NODE'
  155. 'initial_solutions': 10, # 1
  156. 'edit_cost': 'CONSTANT', #
  157. 'attr_distance': 'euclidean',
  158. 'ratio_runs_from_initial_solutions': 1,
  159. 'threads': multiprocessing.cpu_count(),
  160. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  161. mge_options = {'init_type': 'MEDOID',
  162. 'random_inits': 10,
  163. 'time_limit': 600,
  164. 'verbose': 2,
  165. 'refine': False}
  166. save_results = True
  167. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
  168. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  169. edge_required = False #
  170. # print settings.
  171. print('parameters:')
  172. print('dataset name:', ds_name)
  173. print('mpg_options:', mpg_options)
  174. print('kernel_options:', kernel_options)
  175. print('ged_options:', ged_options)
  176. print('mge_options:', mge_options)
  177. print('save_results:', save_results)
  178. print('irrelevant_labels:', irrelevant_labels)
  179. print()
  180. # generate preimages.
  181. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  182. print('\n-------------------------------------')
  183. print('fit method:', fit_method, '\n')
  184. mpg_options['fit_method'] = fit_method
  185. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  186. def xp_median_preimage_12_4():
  187. """xp 12_4: PAH, WeisfeilerLehman, using CONSTANT, unlabeled.
  188. """
  189. # set parameters.
  190. ds_name = 'PAH' #
  191. mpg_options = {'fit_method': 'k-graphs',
  192. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  193. 'ds_name': ds_name,
  194. 'parallel': True, # False
  195. 'time_limit_in_sec': 0,
  196. 'max_itrs': 100, #
  197. 'max_itrs_without_update': 3,
  198. 'epsilon_residual': 0.01,
  199. 'epsilon_ec': 0.1,
  200. 'verbose': 2}
  201. kernel_options = {'name': 'WeisfeilerLehman',
  202. 'height': 14,
  203. 'base_kernel': 'subtree',
  204. 'parallel': 'imap_unordered',
  205. # 'parallel': None,
  206. 'n_jobs': multiprocessing.cpu_count(),
  207. 'normalize': True,
  208. 'verbose': 2}
  209. ged_options = {'method': 'IPFP',
  210. 'initialization_method': 'RANDOM', # 'NODE'
  211. 'initial_solutions': 10, # 1
  212. 'edit_cost': 'CONSTANT', #
  213. 'attr_distance': 'euclidean',
  214. 'ratio_runs_from_initial_solutions': 1,
  215. 'threads': multiprocessing.cpu_count(),
  216. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  217. mge_options = {'init_type': 'MEDOID',
  218. 'random_inits': 10,
  219. 'time_limit': 600,
  220. 'verbose': 2,
  221. 'refine': False}
  222. save_results = True
  223. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
  224. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  225. edge_required = False #
  226. # print settings.
  227. print('parameters:')
  228. print('dataset name:', ds_name)
  229. print('mpg_options:', mpg_options)
  230. print('kernel_options:', kernel_options)
  231. print('ged_options:', ged_options)
  232. print('mge_options:', mge_options)
  233. print('save_results:', save_results)
  234. print('irrelevant_labels:', irrelevant_labels)
  235. print()
  236. # # compute gram matrices for each class a priori.
  237. # print('Compute gram matrices for each class a priori.')
  238. # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
  239. # generate preimages.
  240. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  241. print('\n-------------------------------------')
  242. print('fit method:', fit_method, '\n')
  243. mpg_options['fit_method'] = fit_method
  244. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  245. def xp_median_preimage_12_5():
  246. """xp 12_5: PAH, ShortestPath, using NON_SYMBOLIC, unlabeled.
  247. """
  248. # set parameters.
  249. ds_name = 'PAH' #
  250. mpg_options = {'fit_method': 'k-graphs',
  251. 'init_ecc': [4, 4, 0, 1, 1, 0], #
  252. 'ds_name': ds_name,
  253. 'parallel': True, # False
  254. 'time_limit_in_sec': 0,
  255. 'max_itrs': 100,
  256. 'max_itrs_without_update': 3,
  257. 'epsilon_residual': 0.01,
  258. 'epsilon_ec': 0.1,
  259. 'verbose': 2}
  260. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  261. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  262. kernel_options = {'name': 'ShortestPath',
  263. 'edge_weight': None,
  264. 'node_kernels': sub_kernels,
  265. 'parallel': 'imap_unordered',
  266. # 'parallel': None,
  267. 'n_jobs': multiprocessing.cpu_count(),
  268. 'normalize': True,
  269. 'verbose': 2}
  270. ged_options = {'method': 'IPFP',
  271. 'initialization_method': 'RANDOM', # 'NODE'
  272. 'initial_solutions': 10, # 1
  273. 'edit_cost': 'NON_SYMBOLIC', #
  274. 'attr_distance': 'euclidean',
  275. 'ratio_runs_from_initial_solutions': 1,
  276. 'threads': multiprocessing.cpu_count(),
  277. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  278. mge_options = {'init_type': 'MEDOID',
  279. 'random_inits': 10,
  280. 'time_limit': 600,
  281. 'verbose': 2,
  282. 'refine': False}
  283. save_results = True
  284. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/' #
  285. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  286. edge_required = True #
  287. # print settings.
  288. print('parameters:')
  289. print('dataset name:', ds_name)
  290. print('mpg_options:', mpg_options)
  291. print('kernel_options:', kernel_options)
  292. print('ged_options:', ged_options)
  293. print('mge_options:', mge_options)
  294. print('save_results:', save_results)
  295. print('irrelevant_labels:', irrelevant_labels)
  296. print()
  297. # generate preimages.
  298. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: #
  299. print('\n-------------------------------------')
  300. print('fit method:', fit_method, '\n')
  301. mpg_options['fit_method'] = fit_method
  302. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  303. def xp_median_preimage_9_1():
  304. """xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
  305. """
  306. # set parameters.
  307. ds_name = 'MAO' #
  308. mpg_options = {'fit_method': 'k-graphs',
  309. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  310. 'ds_name': ds_name,
  311. 'parallel': True, # False
  312. 'time_limit_in_sec': 0,
  313. 'max_itrs': 100, #
  314. 'max_itrs_without_update': 3,
  315. 'epsilon_residual': 0.01,
  316. 'epsilon_ec': 0.1,
  317. 'verbose': 2}
  318. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  319. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  320. kernel_options = {'name': 'StructuralSP',
  321. 'edge_weight': None,
  322. 'node_kernels': sub_kernels,
  323. 'edge_kernels': sub_kernels,
  324. 'compute_method': 'naive',
  325. 'parallel': 'imap_unordered',
  326. # 'parallel': None,
  327. 'n_jobs': multiprocessing.cpu_count(),
  328. 'normalize': True,
  329. 'verbose': 2}
  330. ged_options = {'method': 'IPFP',
  331. 'initialization_method': 'RANDOM', # 'NODE'
  332. 'initial_solutions': 10, # 1
  333. 'edit_cost': 'CONSTANT', #
  334. 'attr_distance': 'euclidean',
  335. 'ratio_runs_from_initial_solutions': 1,
  336. 'threads': multiprocessing.cpu_count(),
  337. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  338. mge_options = {'init_type': 'MEDOID',
  339. 'random_inits': 10,
  340. 'time_limit': 600,
  341. 'verbose': 2,
  342. 'refine': False}
  343. save_results = True
  344. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
  345. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  346. edge_required = False #
  347. # print settings.
  348. print('parameters:')
  349. print('dataset name:', ds_name)
  350. print('mpg_options:', mpg_options)
  351. print('kernel_options:', kernel_options)
  352. print('ged_options:', ged_options)
  353. print('mge_options:', mge_options)
  354. print('save_results:', save_results)
  355. print('irrelevant_labels:', irrelevant_labels)
  356. print()
  357. # generate preimages.
  358. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  359. print('\n-------------------------------------')
  360. print('fit method:', fit_method, '\n')
  361. mpg_options['fit_method'] = fit_method
  362. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  363. def xp_median_preimage_9_2():
  364. """xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
  365. """
  366. # set parameters.
  367. ds_name = 'MAO' #
  368. mpg_options = {'fit_method': 'k-graphs',
  369. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  370. 'ds_name': ds_name,
  371. 'parallel': True, # False
  372. 'time_limit_in_sec': 0,
  373. 'max_itrs': 100, #
  374. 'max_itrs_without_update': 3,
  375. 'epsilon_residual': 0.01,
  376. 'epsilon_ec': 0.1,
  377. 'verbose': 2}
  378. kernel_options = {'name': 'PathUpToH',
  379. 'depth': 9, #
  380. 'k_func': 'MinMax', #
  381. 'compute_method': 'trie',
  382. 'parallel': 'imap_unordered',
  383. # 'parallel': None,
  384. 'n_jobs': multiprocessing.cpu_count(),
  385. 'normalize': True,
  386. 'verbose': 2}
  387. ged_options = {'method': 'IPFP',
  388. 'initialization_method': 'RANDOM', # 'NODE'
  389. 'initial_solutions': 10, # 1
  390. 'edit_cost': 'CONSTANT', #
  391. 'attr_distance': 'euclidean',
  392. 'ratio_runs_from_initial_solutions': 1,
  393. 'threads': multiprocessing.cpu_count(),
  394. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  395. mge_options = {'init_type': 'MEDOID',
  396. 'random_inits': 10,
  397. 'time_limit': 600,
  398. 'verbose': 2,
  399. 'refine': False}
  400. save_results = True
  401. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
  402. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  403. edge_required = False #
  404. # print settings.
  405. print('parameters:')
  406. print('dataset name:', ds_name)
  407. print('mpg_options:', mpg_options)
  408. print('kernel_options:', kernel_options)
  409. print('ged_options:', ged_options)
  410. print('mge_options:', mge_options)
  411. print('save_results:', save_results)
  412. print('irrelevant_labels:', irrelevant_labels)
  413. print()
  414. # generate preimages.
  415. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  416. print('\n-------------------------------------')
  417. print('fit method:', fit_method, '\n')
  418. mpg_options['fit_method'] = fit_method
  419. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  420. def xp_median_preimage_9_3():
  421. """xp 9_3: MAO, Treelet, using CONSTANT, symbolic only.
  422. """
  423. from gklearn.utils.kernels import polynomialkernel
  424. # set parameters.
  425. ds_name = 'MAO' #
  426. mpg_options = {'fit_method': 'k-graphs',
  427. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  428. 'ds_name': ds_name,
  429. 'parallel': True, # False
  430. 'time_limit_in_sec': 0,
  431. 'max_itrs': 100, #
  432. 'max_itrs_without_update': 3,
  433. 'epsilon_residual': 0.01,
  434. 'epsilon_ec': 0.1,
  435. 'verbose': 2}
  436. pkernel = functools.partial(polynomialkernel, d=4, c=1e+7)
  437. kernel_options = {'name': 'Treelet', #
  438. 'sub_kernel': pkernel,
  439. 'parallel': 'imap_unordered',
  440. # 'parallel': None,
  441. 'n_jobs': multiprocessing.cpu_count(),
  442. 'normalize': True,
  443. 'verbose': 2}
  444. ged_options = {'method': 'IPFP',
  445. 'initialization_method': 'RANDOM', # 'NODE'
  446. 'initial_solutions': 10, # 1
  447. 'edit_cost': 'CONSTANT', #
  448. 'attr_distance': 'euclidean',
  449. 'ratio_runs_from_initial_solutions': 1,
  450. 'threads': multiprocessing.cpu_count(),
  451. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  452. mge_options = {'init_type': 'MEDOID',
  453. 'random_inits': 10,
  454. 'time_limit': 600,
  455. 'verbose': 2,
  456. 'refine': False}
  457. save_results = True
  458. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
  459. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  460. edge_required = False #
  461. # print settings.
  462. print('parameters:')
  463. print('dataset name:', ds_name)
  464. print('mpg_options:', mpg_options)
  465. print('kernel_options:', kernel_options)
  466. print('ged_options:', ged_options)
  467. print('mge_options:', mge_options)
  468. print('save_results:', save_results)
  469. print('irrelevant_labels:', irrelevant_labels)
  470. print()
  471. # generate preimages.
  472. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  473. print('\n-------------------------------------')
  474. print('fit method:', fit_method, '\n')
  475. mpg_options['fit_method'] = fit_method
  476. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  477. def xp_median_preimage_9_4():
  478. """xp 9_4: MAO, WeisfeilerLehman, using CONSTANT, symbolic only.
  479. """
  480. # set parameters.
  481. ds_name = 'MAO' #
  482. mpg_options = {'fit_method': 'k-graphs',
  483. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  484. 'ds_name': ds_name,
  485. 'parallel': True, # False
  486. 'time_limit_in_sec': 0,
  487. 'max_itrs': 100, #
  488. 'max_itrs_without_update': 3,
  489. 'epsilon_residual': 0.01,
  490. 'epsilon_ec': 0.1,
  491. 'verbose': 2}
  492. kernel_options = {'name': 'WeisfeilerLehman',
  493. 'height': 6,
  494. 'base_kernel': 'subtree',
  495. 'parallel': 'imap_unordered',
  496. # 'parallel': None,
  497. 'n_jobs': multiprocessing.cpu_count(),
  498. 'normalize': True,
  499. 'verbose': 2}
  500. ged_options = {'method': 'IPFP',
  501. 'initialization_method': 'RANDOM', # 'NODE'
  502. 'initial_solutions': 10, # 1
  503. 'edit_cost': 'CONSTANT', #
  504. 'attr_distance': 'euclidean',
  505. 'ratio_runs_from_initial_solutions': 1,
  506. 'threads': multiprocessing.cpu_count(),
  507. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  508. mge_options = {'init_type': 'MEDOID',
  509. 'random_inits': 10,
  510. 'time_limit': 600,
  511. 'verbose': 2,
  512. 'refine': False}
  513. save_results = True
  514. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
  515. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  516. edge_required = False #
  517. # print settings.
  518. print('parameters:')
  519. print('dataset name:', ds_name)
  520. print('mpg_options:', mpg_options)
  521. print('kernel_options:', kernel_options)
  522. print('ged_options:', ged_options)
  523. print('mge_options:', mge_options)
  524. print('save_results:', save_results)
  525. print('irrelevant_labels:', irrelevant_labels)
  526. print()
  527. # # compute gram matrices for each class a priori.
  528. # print('Compute gram matrices for each class a priori.')
  529. # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
  530. # generate preimages.
  531. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  532. print('\n-------------------------------------')
  533. print('fit method:', fit_method, '\n')
  534. mpg_options['fit_method'] = fit_method
  535. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  536. def xp_median_preimage_8_1():
  537. """xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
  538. """
  539. # set parameters.
  540. ds_name = 'Monoterpenoides' #
  541. mpg_options = {'fit_method': 'k-graphs',
  542. 'init_ecc': [3, 3, 1, 3, 3, 1], #
  543. 'ds_name': ds_name,
  544. 'parallel': True, # False
  545. 'time_limit_in_sec': 0,
  546. 'max_itrs': 100, #
  547. 'max_itrs_without_update': 3,
  548. 'epsilon_residual': 0.01,
  549. 'epsilon_ec': 0.1,
  550. 'verbose': 2}
  551. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  552. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  553. kernel_options = {'name': 'StructuralSP',
  554. 'edge_weight': None,
  555. 'node_kernels': sub_kernels,
  556. 'edge_kernels': sub_kernels,
  557. 'compute_method': 'naive',
  558. 'parallel': 'imap_unordered',
  559. # 'parallel': None,
  560. 'n_jobs': multiprocessing.cpu_count(),
  561. 'normalize': True,
  562. 'verbose': 2}
  563. ged_options = {'method': 'IPFP',
  564. 'initialization_method': 'RANDOM', # 'NODE'
  565. 'initial_solutions': 10, # 1
  566. 'edit_cost': 'CONSTANT', #
  567. 'attr_distance': 'euclidean',
  568. 'ratio_runs_from_initial_solutions': 1,
  569. 'threads': multiprocessing.cpu_count(),
  570. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  571. mge_options = {'init_type': 'MEDOID',
  572. 'random_inits': 10,
  573. 'time_limit': 600,
  574. 'verbose': 2,
  575. 'refine': False}
  576. save_results = True
  577. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  578. irrelevant_labels = None #
  579. edge_required = False #
  580. # print settings.
  581. print('parameters:')
  582. print('dataset name:', ds_name)
  583. print('mpg_options:', mpg_options)
  584. print('kernel_options:', kernel_options)
  585. print('ged_options:', ged_options)
  586. print('mge_options:', mge_options)
  587. print('save_results:', save_results)
  588. print('irrelevant_labels:', irrelevant_labels)
  589. print()
  590. # generate preimages.
  591. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  592. print('\n-------------------------------------')
  593. print('fit method:', fit_method, '\n')
  594. mpg_options['fit_method'] = fit_method
  595. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  596. def xp_median_preimage_8_2():
  597. """xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
  598. """
  599. # set parameters.
  600. ds_name = 'Monoterpenoides' #
  601. mpg_options = {'fit_method': 'k-graphs',
  602. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  603. 'ds_name': ds_name,
  604. 'parallel': True, # False
  605. 'time_limit_in_sec': 0,
  606. 'max_itrs': 100, #
  607. 'max_itrs_without_update': 3,
  608. 'epsilon_residual': 0.01,
  609. 'epsilon_ec': 0.1,
  610. 'verbose': 2}
  611. kernel_options = {'name': 'PathUpToH',
  612. 'depth': 7, #
  613. 'k_func': 'MinMax', #
  614. 'compute_method': 'trie',
  615. 'parallel': 'imap_unordered',
  616. # 'parallel': None,
  617. 'n_jobs': multiprocessing.cpu_count(),
  618. 'normalize': True,
  619. 'verbose': 2}
  620. ged_options = {'method': 'IPFP',
  621. 'initialization_method': 'RANDOM', # 'NODE'
  622. 'initial_solutions': 10, # 1
  623. 'edit_cost': 'CONSTANT', #
  624. 'attr_distance': 'euclidean',
  625. 'ratio_runs_from_initial_solutions': 1,
  626. 'threads': multiprocessing.cpu_count(),
  627. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  628. mge_options = {'init_type': 'MEDOID',
  629. 'random_inits': 10,
  630. 'time_limit': 600,
  631. 'verbose': 2,
  632. 'refine': False}
  633. save_results = True
  634. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  635. irrelevant_labels = None #
  636. edge_required = False #
  637. # print settings.
  638. print('parameters:')
  639. print('dataset name:', ds_name)
  640. print('mpg_options:', mpg_options)
  641. print('kernel_options:', kernel_options)
  642. print('ged_options:', ged_options)
  643. print('mge_options:', mge_options)
  644. print('save_results:', save_results)
  645. print('irrelevant_labels:', irrelevant_labels)
  646. print()
  647. # generate preimages.
  648. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  649. print('\n-------------------------------------')
  650. print('fit method:', fit_method, '\n')
  651. mpg_options['fit_method'] = fit_method
  652. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  653. def xp_median_preimage_8_3():
  654. """xp 8_3: Monoterpenoides, Treelet, using CONSTANT.
  655. """
  656. from gklearn.utils.kernels import polynomialkernel
  657. # set parameters.
  658. ds_name = 'Monoterpenoides' #
  659. mpg_options = {'fit_method': 'k-graphs',
  660. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  661. 'ds_name': ds_name,
  662. 'parallel': True, # False
  663. 'time_limit_in_sec': 0,
  664. 'max_itrs': 100, #
  665. 'max_itrs_without_update': 3,
  666. 'epsilon_residual': 0.01,
  667. 'epsilon_ec': 0.1,
  668. 'verbose': 2}
  669. pkernel = functools.partial(polynomialkernel, d=2, c=1e+5)
  670. kernel_options = {'name': 'Treelet',
  671. 'sub_kernel': pkernel,
  672. 'parallel': 'imap_unordered',
  673. # 'parallel': None,
  674. 'n_jobs': multiprocessing.cpu_count(),
  675. 'normalize': True,
  676. 'verbose': 2}
  677. ged_options = {'method': 'IPFP',
  678. 'initialization_method': 'RANDOM', # 'NODE'
  679. 'initial_solutions': 10, # 1
  680. 'edit_cost': 'CONSTANT', #
  681. 'attr_distance': 'euclidean',
  682. 'ratio_runs_from_initial_solutions': 1,
  683. 'threads': multiprocessing.cpu_count(),
  684. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  685. mge_options = {'init_type': 'MEDOID',
  686. 'random_inits': 10,
  687. 'time_limit': 600,
  688. 'verbose': 2,
  689. 'refine': False}
  690. save_results = True
  691. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  692. irrelevant_labels = None #
  693. edge_required = False #
  694. # print settings.
  695. print('parameters:')
  696. print('dataset name:', ds_name)
  697. print('mpg_options:', mpg_options)
  698. print('kernel_options:', kernel_options)
  699. print('ged_options:', ged_options)
  700. print('mge_options:', mge_options)
  701. print('save_results:', save_results)
  702. print('irrelevant_labels:', irrelevant_labels)
  703. print()
  704. # generate preimages.
  705. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  706. print('\n-------------------------------------')
  707. print('fit method:', fit_method, '\n')
  708. mpg_options['fit_method'] = fit_method
  709. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  710. def xp_median_preimage_8_4():
  711. """xp 8_4: Monoterpenoides, WeisfeilerLehman, using CONSTANT.
  712. """
  713. # set parameters.
  714. ds_name = 'Monoterpenoides' #
  715. mpg_options = {'fit_method': 'k-graphs',
  716. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  717. 'ds_name': ds_name,
  718. 'parallel': True, # False
  719. 'time_limit_in_sec': 0,
  720. 'max_itrs': 100, #
  721. 'max_itrs_without_update': 3,
  722. 'epsilon_residual': 0.01,
  723. 'epsilon_ec': 0.1,
  724. 'verbose': 2}
  725. kernel_options = {'name': 'WeisfeilerLehman',
  726. 'height': 4,
  727. 'base_kernel': 'subtree',
  728. 'parallel': 'imap_unordered',
  729. # 'parallel': None,
  730. 'n_jobs': multiprocessing.cpu_count(),
  731. 'normalize': True,
  732. 'verbose': 2}
  733. ged_options = {'method': 'IPFP',
  734. 'initialization_method': 'RANDOM', # 'NODE'
  735. 'initial_solutions': 10, # 1
  736. 'edit_cost': 'CONSTANT', #
  737. 'attr_distance': 'euclidean',
  738. 'ratio_runs_from_initial_solutions': 1,
  739. 'threads': multiprocessing.cpu_count(),
  740. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  741. mge_options = {'init_type': 'MEDOID',
  742. 'random_inits': 10,
  743. 'time_limit': 600,
  744. 'verbose': 2,
  745. 'refine': False}
  746. save_results = True
  747. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  748. irrelevant_labels = None #
  749. edge_required = False #
  750. # print settings.
  751. print('parameters:')
  752. print('dataset name:', ds_name)
  753. print('mpg_options:', mpg_options)
  754. print('kernel_options:', kernel_options)
  755. print('ged_options:', ged_options)
  756. print('mge_options:', mge_options)
  757. print('save_results:', save_results)
  758. print('irrelevant_labels:', irrelevant_labels)
  759. print()
  760. # generate preimages.
  761. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  762. print('\n-------------------------------------')
  763. print('fit method:', fit_method, '\n')
  764. mpg_options['fit_method'] = fit_method
  765. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  766. def xp_median_preimage_7_1():
  767. """xp 7_1: MUTAG, StructuralSP, using CONSTANT.
  768. """
  769. # set parameters.
  770. ds_name = 'MUTAG' #
  771. mpg_options = {'fit_method': 'k-graphs',
  772. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  773. 'ds_name': ds_name,
  774. 'parallel': True, # False
  775. 'time_limit_in_sec': 0,
  776. 'max_itrs': 100, #
  777. 'max_itrs_without_update': 3,
  778. 'epsilon_residual': 0.01,
  779. 'epsilon_ec': 0.1,
  780. 'verbose': 2}
  781. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  782. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  783. kernel_options = {'name': 'StructuralSP',
  784. 'edge_weight': None,
  785. 'node_kernels': sub_kernels,
  786. 'edge_kernels': sub_kernels,
  787. 'compute_method': 'naive',
  788. 'parallel': 'imap_unordered',
  789. # 'parallel': None,
  790. 'n_jobs': multiprocessing.cpu_count(),
  791. 'normalize': True,
  792. 'verbose': 2}
  793. ged_options = {'method': 'IPFP',
  794. 'initialization_method': 'RANDOM', # 'NODE'
  795. 'initial_solutions': 10, # 1
  796. 'edit_cost': 'CONSTANT', #
  797. 'attr_distance': 'euclidean',
  798. 'ratio_runs_from_initial_solutions': 1,
  799. 'threads': multiprocessing.cpu_count(),
  800. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  801. mge_options = {'init_type': 'MEDOID',
  802. 'random_inits': 10,
  803. 'time_limit': 600,
  804. 'verbose': 2,
  805. 'refine': False}
  806. save_results = True
  807. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  808. irrelevant_labels = None #
  809. edge_required = False #
  810. # print settings.
  811. print('parameters:')
  812. print('dataset name:', ds_name)
  813. print('mpg_options:', mpg_options)
  814. print('kernel_options:', kernel_options)
  815. print('ged_options:', ged_options)
  816. print('mge_options:', mge_options)
  817. print('save_results:', save_results)
  818. print('irrelevant_labels:', irrelevant_labels)
  819. print()
  820. # generate preimages.
  821. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  822. print('\n-------------------------------------')
  823. print('fit method:', fit_method, '\n')
  824. mpg_options['fit_method'] = fit_method
  825. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  826. def xp_median_preimage_7_2():
  827. """xp 7_2: MUTAG, PathUpToH, using CONSTANT.
  828. """
  829. # set parameters.
  830. ds_name = 'MUTAG' #
  831. mpg_options = {'fit_method': 'k-graphs',
  832. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  833. 'ds_name': ds_name,
  834. 'parallel': True, # False
  835. 'time_limit_in_sec': 0,
  836. 'max_itrs': 100, #
  837. 'max_itrs_without_update': 3,
  838. 'epsilon_residual': 0.01,
  839. 'epsilon_ec': 0.1,
  840. 'verbose': 2}
  841. kernel_options = {'name': 'PathUpToH',
  842. 'depth': 2, #
  843. 'k_func': 'MinMax', #
  844. 'compute_method': 'trie',
  845. 'parallel': 'imap_unordered',
  846. # 'parallel': None,
  847. 'n_jobs': multiprocessing.cpu_count(),
  848. 'normalize': True,
  849. 'verbose': 2}
  850. ged_options = {'method': 'IPFP',
  851. 'initialization_method': 'RANDOM', # 'NODE'
  852. 'initial_solutions': 10, # 1
  853. 'edit_cost': 'CONSTANT', #
  854. 'attr_distance': 'euclidean',
  855. 'ratio_runs_from_initial_solutions': 1,
  856. 'threads': multiprocessing.cpu_count(),
  857. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  858. mge_options = {'init_type': 'MEDOID',
  859. 'random_inits': 10,
  860. 'time_limit': 600,
  861. 'verbose': 2,
  862. 'refine': False}
  863. save_results = True
  864. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  865. irrelevant_labels = None #
  866. edge_required = False #
  867. # print settings.
  868. print('parameters:')
  869. print('dataset name:', ds_name)
  870. print('mpg_options:', mpg_options)
  871. print('kernel_options:', kernel_options)
  872. print('ged_options:', ged_options)
  873. print('mge_options:', mge_options)
  874. print('save_results:', save_results)
  875. print('irrelevant_labels:', irrelevant_labels)
  876. print()
  877. # generate preimages.
  878. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  879. print('\n-------------------------------------')
  880. print('fit method:', fit_method, '\n')
  881. mpg_options['fit_method'] = fit_method
  882. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  883. def xp_median_preimage_7_3():
  884. """xp 7_3: MUTAG, Treelet, using CONSTANT.
  885. """
  886. from gklearn.utils.kernels import polynomialkernel
  887. # set parameters.
  888. ds_name = 'MUTAG' #
  889. mpg_options = {'fit_method': 'k-graphs',
  890. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  891. 'ds_name': ds_name,
  892. 'parallel': True, # False
  893. 'time_limit_in_sec': 0,
  894. 'max_itrs': 100, #
  895. 'max_itrs_without_update': 3,
  896. 'epsilon_residual': 0.01,
  897. 'epsilon_ec': 0.1,
  898. 'verbose': 2}
  899. pkernel = functools.partial(polynomialkernel, d=3, c=1e+8)
  900. kernel_options = {'name': 'Treelet',
  901. 'sub_kernel': pkernel,
  902. 'parallel': 'imap_unordered',
  903. # 'parallel': None,
  904. 'n_jobs': multiprocessing.cpu_count(),
  905. 'normalize': True,
  906. 'verbose': 2}
  907. ged_options = {'method': 'IPFP',
  908. 'initialization_method': 'RANDOM', # 'NODE'
  909. 'initial_solutions': 10, # 1
  910. 'edit_cost': 'CONSTANT', #
  911. 'attr_distance': 'euclidean',
  912. 'ratio_runs_from_initial_solutions': 1,
  913. 'threads': multiprocessing.cpu_count(),
  914. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  915. mge_options = {'init_type': 'MEDOID',
  916. 'random_inits': 10,
  917. 'time_limit': 600,
  918. 'verbose': 2,
  919. 'refine': False}
  920. save_results = True
  921. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  922. irrelevant_labels = None #
  923. edge_required = False #
  924. # print settings.
  925. print('parameters:')
  926. print('dataset name:', ds_name)
  927. print('mpg_options:', mpg_options)
  928. print('kernel_options:', kernel_options)
  929. print('ged_options:', ged_options)
  930. print('mge_options:', mge_options)
  931. print('save_results:', save_results)
  932. print('irrelevant_labels:', irrelevant_labels)
  933. print()
  934. # generate preimages.
  935. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  936. print('\n-------------------------------------')
  937. print('fit method:', fit_method, '\n')
  938. mpg_options['fit_method'] = fit_method
  939. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  940. def xp_median_preimage_7_4():
  941. """xp 7_4: MUTAG, WeisfeilerLehman, using CONSTANT.
  942. """
  943. # set parameters.
  944. ds_name = 'MUTAG' #
  945. mpg_options = {'fit_method': 'k-graphs',
  946. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  947. 'ds_name': ds_name,
  948. 'parallel': True, # False
  949. 'time_limit_in_sec': 0,
  950. 'max_itrs': 100, #
  951. 'max_itrs_without_update': 3,
  952. 'epsilon_residual': 0.01,
  953. 'epsilon_ec': 0.1,
  954. 'verbose': 2}
  955. kernel_options = {'name': 'WeisfeilerLehman',
  956. 'height': 1,
  957. 'base_kernel': 'subtree',
  958. 'parallel': 'imap_unordered',
  959. # 'parallel': None,
  960. 'n_jobs': multiprocessing.cpu_count(),
  961. 'normalize': True,
  962. 'verbose': 2}
  963. ged_options = {'method': 'IPFP',
  964. 'initialization_method': 'RANDOM', # 'NODE'
  965. 'initial_solutions': 10, # 1
  966. 'edit_cost': 'CONSTANT', #
  967. 'attr_distance': 'euclidean',
  968. 'ratio_runs_from_initial_solutions': 1,
  969. 'threads': multiprocessing.cpu_count(),
  970. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  971. mge_options = {'init_type': 'MEDOID',
  972. 'random_inits': 10,
  973. 'time_limit': 600,
  974. 'verbose': 2,
  975. 'refine': False}
  976. save_results = True
  977. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  978. irrelevant_labels = None #
  979. edge_required = False #
  980. # print settings.
  981. print('parameters:')
  982. print('dataset name:', ds_name)
  983. print('mpg_options:', mpg_options)
  984. print('kernel_options:', kernel_options)
  985. print('ged_options:', ged_options)
  986. print('mge_options:', mge_options)
  987. print('save_results:', save_results)
  988. print('irrelevant_labels:', irrelevant_labels)
  989. print()
  990. # generate preimages.
  991. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  992. print('\n-------------------------------------')
  993. print('fit method:', fit_method, '\n')
  994. mpg_options['fit_method'] = fit_method
  995. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  996. def xp_median_preimage_6_1():
  997. """xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
  998. """
  999. # set parameters.
  1000. ds_name = 'COIL-RAG' #
  1001. mpg_options = {'fit_method': 'k-graphs',
  1002. 'init_ecc': [3, 3, 1, 3, 3, 1], #
  1003. 'ds_name': ds_name,
  1004. 'parallel': True, # False
  1005. 'time_limit_in_sec': 0,
  1006. 'max_itrs': 100,
  1007. 'max_itrs_without_update': 3,
  1008. 'epsilon_residual': 0.01,
  1009. 'epsilon_ec': 0.1,
  1010. 'verbose': 2}
  1011. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1012. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1013. kernel_options = {'name': 'StructuralSP',
  1014. 'edge_weight': None,
  1015. 'node_kernels': sub_kernels,
  1016. 'edge_kernels': sub_kernels,
  1017. 'compute_method': 'naive',
  1018. 'parallel': 'imap_unordered',
  1019. # 'parallel': None,
  1020. 'n_jobs': multiprocessing.cpu_count(),
  1021. 'normalize': True,
  1022. 'verbose': 2}
  1023. ged_options = {'method': 'IPFP',
  1024. 'initialization_method': 'RANDOM', # 'NODE'
  1025. 'initial_solutions': 10, # 1
  1026. 'edit_cost': 'NON_SYMBOLIC', #
  1027. 'attr_distance': 'euclidean',
  1028. 'ratio_runs_from_initial_solutions': 1,
  1029. 'threads': multiprocessing.cpu_count(),
  1030. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1031. mge_options = {'init_type': 'MEDOID',
  1032. 'random_inits': 10,
  1033. 'time_limit': 600,
  1034. 'verbose': 2,
  1035. 'refine': False}
  1036. save_results = True
  1037. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1038. irrelevant_labels = None #
  1039. edge_required = False #
  1040. # print settings.
  1041. print('parameters:')
  1042. print('dataset name:', ds_name)
  1043. print('mpg_options:', mpg_options)
  1044. print('kernel_options:', kernel_options)
  1045. print('ged_options:', ged_options)
  1046. print('mge_options:', mge_options)
  1047. print('save_results:', save_results)
  1048. print('irrelevant_labels:', irrelevant_labels)
  1049. print()
  1050. # generate preimages.
  1051. for fit_method in ['k-graphs'] + ['random'] * 5:
  1052. print('\n-------------------------------------')
  1053. print('fit method:', fit_method, '\n')
  1054. mpg_options['fit_method'] = fit_method
  1055. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1056. def xp_median_preimage_6_2():
  1057. """xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
  1058. """
  1059. # set parameters.
  1060. ds_name = 'COIL-RAG' #
  1061. mpg_options = {'fit_method': 'k-graphs',
  1062. 'init_ecc': [3, 3, 1, 3, 3, 1], #
  1063. 'ds_name': ds_name,
  1064. 'parallel': True, # False
  1065. 'time_limit_in_sec': 0,
  1066. 'max_itrs': 100,
  1067. 'max_itrs_without_update': 3,
  1068. 'epsilon_residual': 0.01,
  1069. 'epsilon_ec': 0.1,
  1070. 'verbose': 2}
  1071. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1072. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1073. kernel_options = {'name': 'ShortestPath',
  1074. 'edge_weight': None,
  1075. 'node_kernels': sub_kernels,
  1076. 'parallel': 'imap_unordered',
  1077. # 'parallel': None,
  1078. 'n_jobs': multiprocessing.cpu_count(),
  1079. 'normalize': True,
  1080. 'verbose': 2}
  1081. ged_options = {'method': 'IPFP',
  1082. 'initialization_method': 'RANDOM', # 'NODE'
  1083. 'initial_solutions': 10, # 1
  1084. 'edit_cost': 'NON_SYMBOLIC', #
  1085. 'attr_distance': 'euclidean',
  1086. 'ratio_runs_from_initial_solutions': 1,
  1087. 'threads': multiprocessing.cpu_count(),
  1088. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1089. mge_options = {'init_type': 'MEDOID',
  1090. 'random_inits': 10,
  1091. 'time_limit': 600,
  1092. 'verbose': 2,
  1093. 'refine': False}
  1094. save_results = True
  1095. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1096. irrelevant_labels = None #
  1097. edge_required = True #
  1098. # print settings.
  1099. print('parameters:')
  1100. print('dataset name:', ds_name)
  1101. print('mpg_options:', mpg_options)
  1102. print('kernel_options:', kernel_options)
  1103. print('ged_options:', ged_options)
  1104. print('mge_options:', mge_options)
  1105. print('save_results:', save_results)
  1106. print('irrelevant_labels:', irrelevant_labels)
  1107. print()
  1108. # generate preimages.
  1109. for fit_method in ['k-graphs'] + ['random'] * 5:
  1110. print('\n-------------------------------------')
  1111. print('fit method:', fit_method, '\n')
  1112. mpg_options['fit_method'] = fit_method
  1113. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1114. def xp_median_preimage_5_1():
  1115. """xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
  1116. """
  1117. # set parameters.
  1118. ds_name = 'FRANKENSTEIN' #
  1119. mpg_options = {'fit_method': 'k-graphs',
  1120. 'init_ecc': [3, 3, 1, 3, 3, 0], #
  1121. 'ds_name': ds_name,
  1122. 'parallel': True, # False
  1123. 'time_limit_in_sec': 0,
  1124. 'max_itrs': 100,
  1125. 'max_itrs_without_update': 3,
  1126. 'epsilon_residual': 0.01,
  1127. 'epsilon_ec': 0.1,
  1128. 'verbose': 2}
  1129. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1130. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1131. kernel_options = {'name': 'StructuralSP',
  1132. 'edge_weight': None,
  1133. 'node_kernels': sub_kernels,
  1134. 'edge_kernels': sub_kernels,
  1135. 'compute_method': 'naive',
  1136. 'parallel': 'imap_unordered',
  1137. # 'parallel': None,
  1138. 'n_jobs': multiprocessing.cpu_count(),
  1139. 'normalize': True,
  1140. 'verbose': 2}
  1141. ged_options = {'method': 'IPFP',
  1142. 'initialization_method': 'RANDOM', # 'NODE'
  1143. 'initial_solutions': 10, # 1
  1144. 'edit_cost': 'NON_SYMBOLIC',
  1145. 'attr_distance': 'euclidean',
  1146. 'ratio_runs_from_initial_solutions': 1,
  1147. 'threads': multiprocessing.cpu_count(),
  1148. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1149. mge_options = {'init_type': 'MEDOID',
  1150. 'random_inits': 10,
  1151. 'time_limit': 600,
  1152. 'verbose': 2,
  1153. 'refine': False}
  1154. save_results = True
  1155. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1156. irrelevant_labels = None #
  1157. edge_required = False #
  1158. # print settings.
  1159. print('parameters:')
  1160. print('dataset name:', ds_name)
  1161. print('mpg_options:', mpg_options)
  1162. print('kernel_options:', kernel_options)
  1163. print('ged_options:', ged_options)
  1164. print('mge_options:', mge_options)
  1165. print('save_results:', save_results)
  1166. print('irrelevant_labels:', irrelevant_labels)
  1167. print()
  1168. # generate preimages.
  1169. for fit_method in ['k-graphs'] + ['random'] * 5:
  1170. print('\n-------------------------------------')
  1171. print('fit method:', fit_method, '\n')
  1172. mpg_options['fit_method'] = fit_method
  1173. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1174. def xp_median_preimage_4_1():
  1175. """xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
  1176. """
  1177. # set parameters.
  1178. ds_name = 'COLORS-3' #
  1179. mpg_options = {'fit_method': 'k-graphs',
  1180. 'init_ecc': [3, 3, 1, 3, 3, 0], #
  1181. 'ds_name': ds_name,
  1182. 'parallel': True, # False
  1183. 'time_limit_in_sec': 0,
  1184. 'max_itrs': 100,
  1185. 'max_itrs_without_update': 3,
  1186. 'epsilon_residual': 0.01,
  1187. 'epsilon_ec': 0.1,
  1188. 'verbose': 2}
  1189. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1190. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1191. kernel_options = {'name': 'StructuralSP',
  1192. 'edge_weight': None,
  1193. 'node_kernels': sub_kernels,
  1194. 'edge_kernels': sub_kernels,
  1195. 'compute_method': 'naive',
  1196. 'parallel': 'imap_unordered',
  1197. # 'parallel': None,
  1198. 'n_jobs': multiprocessing.cpu_count(),
  1199. 'normalize': True,
  1200. 'verbose': 2}
  1201. ged_options = {'method': 'IPFP',
  1202. 'initialization_method': 'RANDOM', # 'NODE'
  1203. 'initial_solutions': 10, # 1
  1204. 'edit_cost': 'NON_SYMBOLIC',
  1205. 'attr_distance': 'euclidean',
  1206. 'ratio_runs_from_initial_solutions': 1,
  1207. 'threads': multiprocessing.cpu_count(),
  1208. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1209. mge_options = {'init_type': 'MEDOID',
  1210. 'random_inits': 10,
  1211. 'time_limit': 600,
  1212. 'verbose': 2,
  1213. 'refine': False}
  1214. save_results = True
  1215. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1216. irrelevant_labels = None #
  1217. edge_required = False #
  1218. # print settings.
  1219. print('parameters:')
  1220. print('dataset name:', ds_name)
  1221. print('mpg_options:', mpg_options)
  1222. print('kernel_options:', kernel_options)
  1223. print('ged_options:', ged_options)
  1224. print('mge_options:', mge_options)
  1225. print('save_results:', save_results)
  1226. print('irrelevant_labels:', irrelevant_labels)
  1227. print()
  1228. # generate preimages.
  1229. for fit_method in ['k-graphs'] + ['random'] * 5:
  1230. print('\n-------------------------------------')
  1231. print('fit method:', fit_method, '\n')
  1232. mpg_options['fit_method'] = fit_method
  1233. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1234. def xp_median_preimage_3_2():
  1235. """xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
  1236. """
  1237. # set parameters.
  1238. ds_name = 'Fingerprint' #
  1239. mpg_options = {'fit_method': 'k-graphs',
  1240. 'init_ecc': [0.525, 0.525, 0.001, 0.125, 0.125], #
  1241. 'ds_name': ds_name,
  1242. 'parallel': True, # False
  1243. 'time_limit_in_sec': 0,
  1244. 'max_itrs': 100,
  1245. 'max_itrs_without_update': 3,
  1246. 'epsilon_residual': 0.01,
  1247. 'epsilon_ec': 0.1,
  1248. 'verbose': 2}
  1249. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1250. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1251. kernel_options = {'name': 'ShortestPath',
  1252. 'edge_weight': None,
  1253. 'node_kernels': sub_kernels,
  1254. 'parallel': 'imap_unordered',
  1255. # 'parallel': None,
  1256. 'n_jobs': multiprocessing.cpu_count(),
  1257. 'normalize': True,
  1258. 'verbose': 2}
  1259. ged_options = {'method': 'IPFP',
  1260. 'initialization_method': 'RANDOM', # 'NODE'
  1261. 'initial_solutions': 10, # 1
  1262. 'edit_cost': 'LETTER2',
  1263. 'attr_distance': 'euclidean',
  1264. 'ratio_runs_from_initial_solutions': 1,
  1265. 'threads': multiprocessing.cpu_count(),
  1266. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1267. mge_options = {'init_type': 'MEDOID',
  1268. 'random_inits': 10,
  1269. 'time_limit': 600,
  1270. 'verbose': 2,
  1271. 'refine': False}
  1272. save_results = True
  1273. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1274. irrelevant_labels = {'edge_attrs': ['orient', 'angle']} #
  1275. edge_required = True #
  1276. # print settings.
  1277. print('parameters:')
  1278. print('dataset name:', ds_name)
  1279. print('mpg_options:', mpg_options)
  1280. print('kernel_options:', kernel_options)
  1281. print('ged_options:', ged_options)
  1282. print('mge_options:', mge_options)
  1283. print('save_results:', save_results)
  1284. print('irrelevant_labels:', irrelevant_labels)
  1285. print()
  1286. # generate preimages.
  1287. for fit_method in ['k-graphs'] + ['random'] * 5:
  1288. print('\n-------------------------------------')
  1289. print('fit method:', fit_method, '\n')
  1290. mpg_options['fit_method'] = fit_method
  1291. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1292. def xp_median_preimage_3_1():
  1293. """xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
  1294. """
  1295. # set parameters.
  1296. ds_name = 'Fingerprint' #
  1297. mpg_options = {'fit_method': 'k-graphs',
  1298. 'init_ecc': [0.525, 0.525, 0.001, 0.125, 0.125], #
  1299. 'ds_name': ds_name,
  1300. 'parallel': True, # False
  1301. 'time_limit_in_sec': 0,
  1302. 'max_itrs': 100,
  1303. 'max_itrs_without_update': 3,
  1304. 'epsilon_residual': 0.01,
  1305. 'epsilon_ec': 0.1,
  1306. 'verbose': 2}
  1307. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1308. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1309. kernel_options = {'name': 'StructuralSP',
  1310. 'edge_weight': None,
  1311. 'node_kernels': sub_kernels,
  1312. 'edge_kernels': sub_kernels,
  1313. 'compute_method': 'naive',
  1314. 'parallel': 'imap_unordered',
  1315. # 'parallel': None,
  1316. 'n_jobs': multiprocessing.cpu_count(),
  1317. 'normalize': True,
  1318. 'verbose': 2}
  1319. ged_options = {'method': 'IPFP',
  1320. 'initialization_method': 'RANDOM', # 'NODE'
  1321. 'initial_solutions': 10, # 1
  1322. 'edit_cost': 'LETTER2',
  1323. 'attr_distance': 'euclidean',
  1324. 'ratio_runs_from_initial_solutions': 1,
  1325. 'threads': multiprocessing.cpu_count(),
  1326. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1327. mge_options = {'init_type': 'MEDOID',
  1328. 'random_inits': 10,
  1329. 'time_limit': 600,
  1330. 'verbose': 2,
  1331. 'refine': False}
  1332. save_results = True
  1333. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1334. irrelevant_labels = {'edge_attrs': ['orient', 'angle']} #
  1335. edge_required = False #
  1336. # print settings.
  1337. print('parameters:')
  1338. print('dataset name:', ds_name)
  1339. print('mpg_options:', mpg_options)
  1340. print('kernel_options:', kernel_options)
  1341. print('ged_options:', ged_options)
  1342. print('mge_options:', mge_options)
  1343. print('save_results:', save_results)
  1344. print('irrelevant_labels:', irrelevant_labels)
  1345. print()
  1346. # generate preimages.
  1347. for fit_method in ['k-graphs'] + ['random'] * 5:
  1348. print('\n-------------------------------------')
  1349. print('fit method:', fit_method, '\n')
  1350. mpg_options['fit_method'] = fit_method
  1351. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1352. def xp_median_preimage_2_1():
  1353. """xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
  1354. """
  1355. # set parameters.
  1356. ds_name = 'COIL-DEL' #
  1357. mpg_options = {'fit_method': 'k-graphs',
  1358. 'init_ecc': [3, 3, 1, 3, 3],
  1359. 'ds_name': ds_name,
  1360. 'parallel': True, # False
  1361. 'time_limit_in_sec': 0,
  1362. 'max_itrs': 100,
  1363. 'max_itrs_without_update': 3,
  1364. 'epsilon_residual': 0.01,
  1365. 'epsilon_ec': 0.1,
  1366. 'verbose': 2}
  1367. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1368. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1369. kernel_options = {'name': 'StructuralSP',
  1370. 'edge_weight': None,
  1371. 'node_kernels': sub_kernels,
  1372. 'edge_kernels': sub_kernels,
  1373. 'compute_method': 'naive',
  1374. 'parallel': 'imap_unordered',
  1375. # 'parallel': None,
  1376. 'n_jobs': multiprocessing.cpu_count(),
  1377. 'normalize': True,
  1378. 'verbose': 2}
  1379. ged_options = {'method': 'IPFP',
  1380. 'initialization_method': 'RANDOM', # 'NODE'
  1381. 'initial_solutions': 10, # 1
  1382. 'edit_cost': 'LETTER2',
  1383. 'attr_distance': 'euclidean',
  1384. 'ratio_runs_from_initial_solutions': 1,
  1385. 'threads': multiprocessing.cpu_count(),
  1386. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1387. mge_options = {'init_type': 'MEDOID',
  1388. 'random_inits': 10,
  1389. 'time_limit': 600,
  1390. 'verbose': 2,
  1391. 'refine': False}
  1392. save_results = True
  1393. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.node_attrs/'
  1394. irrelevant_labels = {'edge_labels': ['valence']}
  1395. # print settings.
  1396. print('parameters:')
  1397. print('dataset name:', ds_name)
  1398. print('mpg_options:', mpg_options)
  1399. print('kernel_options:', kernel_options)
  1400. print('ged_options:', ged_options)
  1401. print('mge_options:', mge_options)
  1402. print('save_results:', save_results)
  1403. print('irrelevant_labels:', irrelevant_labels)
  1404. print()
  1405. # # compute gram matrices for each class a priori.
  1406. # print('Compute gram matrices for each class a priori.')
  1407. # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
  1408. # generate preimages.
  1409. for fit_method in ['k-graphs'] + ['random'] * 5:
  1410. print('\n-------------------------------------')
  1411. print('fit method:', fit_method, '\n')
  1412. mpg_options['fit_method'] = fit_method
  1413. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels)
  1414. def xp_median_preimage_1_1():
  1415. """xp 1_1: Letter-high, StructuralSP.
  1416. """
  1417. # set parameters.
  1418. ds_name = 'Letter-high'
  1419. mpg_options = {'fit_method': 'k-graphs',
  1420. 'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425],
  1421. 'ds_name': ds_name,
  1422. 'parallel': True, # False
  1423. 'time_limit_in_sec': 0,
  1424. 'max_itrs': 100,
  1425. 'max_itrs_without_update': 3,
  1426. 'epsilon_residual': 0.01,
  1427. 'epsilon_ec': 0.1,
  1428. 'verbose': 2}
  1429. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1430. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1431. kernel_options = {'name': 'StructuralSP',
  1432. 'edge_weight': None,
  1433. 'node_kernels': sub_kernels,
  1434. 'edge_kernels': sub_kernels,
  1435. 'compute_method': 'naive',
  1436. 'parallel': 'imap_unordered',
  1437. # 'parallel': None,
  1438. 'n_jobs': multiprocessing.cpu_count(),
  1439. 'normalize': True,
  1440. 'verbose': 2}
  1441. ged_options = {'method': 'IPFP',
  1442. 'initialization_method': 'RANDOM', # 'NODE'
  1443. 'initial_solutions': 10, # 1
  1444. 'edit_cost': 'LETTER2',
  1445. 'attr_distance': 'euclidean',
  1446. 'ratio_runs_from_initial_solutions': 1,
  1447. 'threads': multiprocessing.cpu_count(),
  1448. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1449. mge_options = {'init_type': 'MEDOID',
  1450. 'random_inits': 10,
  1451. 'time_limit': 600,
  1452. 'verbose': 2,
  1453. 'refine': False}
  1454. save_results = True
  1455. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1456. # print settings.
  1457. print('parameters:')
  1458. print('dataset name:', ds_name)
  1459. print('mpg_options:', mpg_options)
  1460. print('kernel_options:', kernel_options)
  1461. print('ged_options:', ged_options)
  1462. print('mge_options:', mge_options)
  1463. print('save_results:', save_results)
  1464. # generate preimages.
  1465. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1466. print('\n-------------------------------------')
  1467. print('fit method:', fit_method, '\n')
  1468. mpg_options['fit_method'] = fit_method
  1469. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
  1470. def xp_median_preimage_1_2():
  1471. """xp 1_2: Letter-high, ShortestPath.
  1472. """
  1473. # set parameters.
  1474. ds_name = 'Letter-high'
  1475. mpg_options = {'fit_method': 'k-graphs',
  1476. 'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425],
  1477. 'ds_name': ds_name,
  1478. 'parallel': True, # False
  1479. 'time_limit_in_sec': 0,
  1480. 'max_itrs': 100,
  1481. 'max_itrs_without_update': 3,
  1482. 'epsilon_residual': 0.01,
  1483. 'epsilon_ec': 0.1,
  1484. 'verbose': 2}
  1485. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1486. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1487. kernel_options = {'name': 'ShortestPath',
  1488. 'edge_weight': None,
  1489. 'node_kernels': sub_kernels,
  1490. 'parallel': 'imap_unordered',
  1491. # 'parallel': None,
  1492. 'n_jobs': multiprocessing.cpu_count(),
  1493. 'normalize': True,
  1494. 'verbose': 2}
  1495. ged_options = {'method': 'IPFP',
  1496. 'initialization_method': 'RANDOM', # 'NODE'
  1497. 'initial_solutions': 10, # 1
  1498. 'edit_cost': 'LETTER2',
  1499. 'attr_distance': 'euclidean',
  1500. 'ratio_runs_from_initial_solutions': 1,
  1501. 'threads': multiprocessing.cpu_count(),
  1502. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1503. mge_options = {'init_type': 'MEDOID',
  1504. 'random_inits': 10,
  1505. 'time_limit': 600,
  1506. 'verbose': 2,
  1507. 'refine': False}
  1508. save_results = True
  1509. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1510. irrelevant_labels = None #
  1511. edge_required = True #
  1512. # print settings.
  1513. print('parameters:')
  1514. print('dataset name:', ds_name)
  1515. print('mpg_options:', mpg_options)
  1516. print('kernel_options:', kernel_options)
  1517. print('ged_options:', ged_options)
  1518. print('mge_options:', mge_options)
  1519. print('save_results:', save_results)
  1520. print('irrelevant_labels:', irrelevant_labels)
  1521. print()
  1522. # generate preimages.
  1523. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1524. print('\n-------------------------------------')
  1525. print('fit method:', fit_method, '\n')
  1526. mpg_options['fit_method'] = fit_method
  1527. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1528. def xp_median_preimage_10_1():
  1529. """xp 10_1: Letter-med, StructuralSP.
  1530. """
  1531. # set parameters.
  1532. ds_name = 'Letter-med'
  1533. mpg_options = {'fit_method': 'k-graphs',
  1534. 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475],
  1535. 'ds_name': ds_name,
  1536. 'parallel': True, # False
  1537. 'time_limit_in_sec': 0,
  1538. 'max_itrs': 100,
  1539. 'max_itrs_without_update': 3,
  1540. 'epsilon_residual': 0.01,
  1541. 'epsilon_ec': 0.1,
  1542. 'verbose': 2}
  1543. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1544. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1545. kernel_options = {'name': 'StructuralSP',
  1546. 'edge_weight': None,
  1547. 'node_kernels': sub_kernels,
  1548. 'edge_kernels': sub_kernels,
  1549. 'compute_method': 'naive',
  1550. 'parallel': 'imap_unordered',
  1551. # 'parallel': None,
  1552. 'n_jobs': multiprocessing.cpu_count(),
  1553. 'normalize': True,
  1554. 'verbose': 2}
  1555. ged_options = {'method': 'IPFP',
  1556. 'initialization_method': 'RANDOM', # 'NODE'
  1557. 'initial_solutions': 10, # 1
  1558. 'edit_cost': 'LETTER2',
  1559. 'attr_distance': 'euclidean',
  1560. 'ratio_runs_from_initial_solutions': 1,
  1561. 'threads': multiprocessing.cpu_count(),
  1562. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1563. mge_options = {'init_type': 'MEDOID',
  1564. 'random_inits': 10,
  1565. 'time_limit': 600,
  1566. 'verbose': 2,
  1567. 'refine': False}
  1568. save_results = True
  1569. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1570. # print settings.
  1571. print('parameters:')
  1572. print('dataset name:', ds_name)
  1573. print('mpg_options:', mpg_options)
  1574. print('kernel_options:', kernel_options)
  1575. print('ged_options:', ged_options)
  1576. print('mge_options:', mge_options)
  1577. print('save_results:', save_results)
  1578. # generate preimages.
  1579. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1580. print('\n-------------------------------------')
  1581. print('fit method:', fit_method, '\n')
  1582. mpg_options['fit_method'] = fit_method
  1583. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
  1584. def xp_median_preimage_10_2():
  1585. """xp 10_2: Letter-med, ShortestPath.
  1586. """
  1587. # set parameters.
  1588. ds_name = 'Letter-med'
  1589. mpg_options = {'fit_method': 'k-graphs',
  1590. 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475],
  1591. 'ds_name': ds_name,
  1592. 'parallel': True, # False
  1593. 'time_limit_in_sec': 0,
  1594. 'max_itrs': 100,
  1595. 'max_itrs_without_update': 3,
  1596. 'epsilon_residual': 0.01,
  1597. 'epsilon_ec': 0.1,
  1598. 'verbose': 2}
  1599. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1600. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1601. kernel_options = {'name': 'ShortestPath',
  1602. 'edge_weight': None,
  1603. 'node_kernels': sub_kernels,
  1604. 'parallel': 'imap_unordered',
  1605. # 'parallel': None,
  1606. 'n_jobs': multiprocessing.cpu_count(),
  1607. 'normalize': True,
  1608. 'verbose': 2}
  1609. ged_options = {'method': 'IPFP',
  1610. 'initialization_method': 'RANDOM', # 'NODE'
  1611. 'initial_solutions': 10, # 1
  1612. 'edit_cost': 'LETTER2',
  1613. 'attr_distance': 'euclidean',
  1614. 'ratio_runs_from_initial_solutions': 1,
  1615. 'threads': multiprocessing.cpu_count(),
  1616. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1617. mge_options = {'init_type': 'MEDOID',
  1618. 'random_inits': 10,
  1619. 'time_limit': 600,
  1620. 'verbose': 2,
  1621. 'refine': False}
  1622. save_results = True
  1623. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1624. irrelevant_labels = None #
  1625. edge_required = True #
  1626. # print settings.
  1627. print('parameters:')
  1628. print('dataset name:', ds_name)
  1629. print('mpg_options:', mpg_options)
  1630. print('kernel_options:', kernel_options)
  1631. print('ged_options:', ged_options)
  1632. print('mge_options:', mge_options)
  1633. print('save_results:', save_results)
  1634. print('irrelevant_labels:', irrelevant_labels)
  1635. print()
  1636. # generate preimages.
  1637. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1638. print('\n-------------------------------------')
  1639. print('fit method:', fit_method, '\n')
  1640. mpg_options['fit_method'] = fit_method
  1641. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1642. def xp_median_preimage_11_1():
  1643. """xp 11_1: Letter-low, StructuralSP.
  1644. """
  1645. # set parameters.
  1646. ds_name = 'Letter-low'
  1647. mpg_options = {'fit_method': 'k-graphs',
  1648. 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075],
  1649. 'ds_name': ds_name,
  1650. 'parallel': True, # False
  1651. 'time_limit_in_sec': 0,
  1652. 'max_itrs': 100,
  1653. 'max_itrs_without_update': 3,
  1654. 'epsilon_residual': 0.01,
  1655. 'epsilon_ec': 0.1,
  1656. 'verbose': 2}
  1657. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1658. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1659. kernel_options = {'name': 'StructuralSP',
  1660. 'edge_weight': None,
  1661. 'node_kernels': sub_kernels,
  1662. 'edge_kernels': sub_kernels,
  1663. 'compute_method': 'naive',
  1664. 'parallel': 'imap_unordered',
  1665. # 'parallel': None,
  1666. 'n_jobs': multiprocessing.cpu_count(),
  1667. 'normalize': True,
  1668. 'verbose': 2}
  1669. ged_options = {'method': 'IPFP',
  1670. 'initialization_method': 'RANDOM', # 'NODE'
  1671. 'initial_solutions': 10, # 1
  1672. 'edit_cost': 'LETTER2',
  1673. 'attr_distance': 'euclidean',
  1674. 'ratio_runs_from_initial_solutions': 1,
  1675. 'threads': multiprocessing.cpu_count(),
  1676. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1677. mge_options = {'init_type': 'MEDOID',
  1678. 'random_inits': 10,
  1679. 'time_limit': 600,
  1680. 'verbose': 2,
  1681. 'refine': False}
  1682. save_results = True
  1683. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1684. # print settings.
  1685. print('parameters:')
  1686. print('dataset name:', ds_name)
  1687. print('mpg_options:', mpg_options)
  1688. print('kernel_options:', kernel_options)
  1689. print('ged_options:', ged_options)
  1690. print('mge_options:', mge_options)
  1691. print('save_results:', save_results)
  1692. # generate preimages.
  1693. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1694. print('\n-------------------------------------')
  1695. print('fit method:', fit_method, '\n')
  1696. mpg_options['fit_method'] = fit_method
  1697. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
  1698. def xp_median_preimage_11_2():
  1699. """xp 11_2: Letter-low, ShortestPath.
  1700. """
  1701. # set parameters.
  1702. ds_name = 'Letter-low'
  1703. mpg_options = {'fit_method': 'k-graphs',
  1704. 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075],
  1705. 'ds_name': ds_name,
  1706. 'parallel': True, # False
  1707. 'time_limit_in_sec': 0,
  1708. 'max_itrs': 100,
  1709. 'max_itrs_without_update': 3,
  1710. 'epsilon_residual': 0.01,
  1711. 'epsilon_ec': 0.1,
  1712. 'verbose': 2}
  1713. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1714. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1715. kernel_options = {'name': 'ShortestPath',
  1716. 'edge_weight': None,
  1717. 'node_kernels': sub_kernels,
  1718. 'parallel': 'imap_unordered',
  1719. # 'parallel': None,
  1720. 'n_jobs': multiprocessing.cpu_count(),
  1721. 'normalize': True,
  1722. 'verbose': 2}
  1723. ged_options = {'method': 'IPFP',
  1724. 'initialization_method': 'RANDOM', # 'NODE'
  1725. 'initial_solutions': 10, # 1
  1726. 'edit_cost': 'LETTER2',
  1727. 'attr_distance': 'euclidean',
  1728. 'ratio_runs_from_initial_solutions': 1,
  1729. 'threads': multiprocessing.cpu_count(),
  1730. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1731. mge_options = {'init_type': 'MEDOID',
  1732. 'random_inits': 10,
  1733. 'time_limit': 600,
  1734. 'verbose': 2,
  1735. 'refine': False}
  1736. save_results = True
  1737. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1738. irrelevant_labels = None #
  1739. edge_required = True #
  1740. # print settings.
  1741. print('parameters:')
  1742. print('dataset name:', ds_name)
  1743. print('mpg_options:', mpg_options)
  1744. print('kernel_options:', kernel_options)
  1745. print('ged_options:', ged_options)
  1746. print('mge_options:', mge_options)
  1747. print('save_results:', save_results)
  1748. print('irrelevant_labels:', irrelevant_labels)
  1749. print()
  1750. # generate preimages.
  1751. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1752. print('\n-------------------------------------')
  1753. print('fit method:', fit_method, '\n')
  1754. mpg_options['fit_method'] = fit_method
  1755. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1756. if __name__ == "__main__":
  1757. # #### xp 1_1: Letter-high, StructuralSP.
  1758. # # xp_median_preimage_1_1()
  1759. # #### xp 1_2: Letter-high, ShortestPath.
  1760. # # xp_median_preimage_1_2()
  1761. # #### xp 10_1: Letter-med, StructuralSP.
  1762. # # xp_median_preimage_10_1()
  1763. # #### xp 10_2: Letter-med, ShortestPath.
  1764. # # xp_median_preimage_10_2()
  1765. # #### xp 11_1: Letter-low, StructuralSP.
  1766. # # xp_median_preimage_11_1()
  1767. # #### xp 11_2: Letter-low, ShortestPath.
  1768. # # xp_median_preimage_11_2()
  1769. #
  1770. # #### xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
  1771. # # xp_median_preimage_2_1()
  1772. #
  1773. # #### xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
  1774. # # xp_median_preimage_3_1()
  1775. # #### xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
  1776. # xp_median_preimage_3_2()
  1777. # #### xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
  1778. # # xp_median_preimage_4_1()
  1779. #
  1780. # #### xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
  1781. # # xp_median_preimage_5_1()
  1782. #
  1783. # #### xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
  1784. # # xp_median_preimage_6_1()
  1785. # #### xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
  1786. # xp_median_preimage_6_2()
  1787. # #### xp 7_1: MUTAG, StructuralSP, using CONSTANT.
  1788. # # xp_median_preimage_7_1()
  1789. # #### xp 7_2: MUTAG, PathUpToH, using CONSTANT.
  1790. # # xp_median_preimage_7_2()
  1791. # #### xp 7_3: MUTAG, Treelet, using CONSTANT.
  1792. # # xp_median_preimage_7_3()
  1793. # #### xp 7_4: MUTAG, WeisfeilerLehman, using CONSTANT.
  1794. # xp_median_preimage_7_4()
  1795. #
  1796. # #### xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
  1797. # # xp_median_preimage_8_1()
  1798. # #### xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
  1799. # # xp_median_preimage_8_2()
  1800. # #### xp 8_3: Monoterpenoides, Treelet, using CONSTANT.
  1801. # # xp_median_preimage_8_3()
  1802. # #### xp 8_4: Monoterpenoides, WeisfeilerLehman, using CONSTANT.
  1803. # xp_median_preimage_8_4()
  1804. # #### xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
  1805. # xp_median_preimage_9_1()
  1806. # #### xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
  1807. # xp_median_preimage_9_2()
  1808. # #### xp 9_3: MAO, Treelet, using CONSTANT, symbolic only.
  1809. # xp_median_preimage_9_3()
  1810. # #### xp 9_4: MAO, WeisfeilerLehman, using CONSTANT, symbolic only.
  1811. # xp_median_preimage_9_4()
  1812. #### xp 12_1: PAH, StructuralSP, using NON_SYMBOLIC, unlabeled.
  1813. # xp_median_preimage_12_1()
  1814. #### xp 12_2: PAH, PathUpToH, using CONSTANT, unlabeled.
  1815. # xp_median_preimage_12_2()
  1816. #### xp 12_3: PAH, Treelet, using CONSTANT, unlabeled.
  1817. # xp_median_preimage_12_3()
  1818. #### xp 12_4: PAH, WeisfeilerLehman, using CONSTANT, unlabeled.
  1819. # xp_median_preimage_12_4()
  1820. #### xp 12_5: PAH, ShortestPath, using NON_SYMBOLIC, unlabeled.
  1821. xp_median_preimage_12_5()
  1822. # #### xp 7_4: MUTAG, WeisfeilerLehman, using CONSTANT.
  1823. # xp_median_preimage_7_4()
  1824. # #### xp 8_4: Monoterpenoides, WeisfeilerLehman, using CONSTANT.
  1825. # xp_median_preimage_8_4()
  1826. # #### xp 9_4: MAO, WeisfeilerLehman, using CONSTANT, symbolic only.
  1827. # xp_median_preimage_9_4()
  1828. # #### xp 10_1: Letter-med, StructuralSP.
  1829. # xp_median_preimage_10_1()
  1830. # #### xp 10_2: Letter-med, ShortestPath.
  1831. # xp_median_preimage_10_2()
  1832. # #### xp 11_1: Letter-low, StructuralSP.
  1833. # xp_median_preimage_11_1()
  1834. # #### xp 11_2: Letter-low, ShortestPath.
  1835. # xp_median_preimage_11_2()
  1836. #
  1837. # #### xp 1_1: Letter-high, StructuralSP.
  1838. # xp_median_preimage_1_1()
  1839. # #### xp 1_2: Letter-high, ShortestPath.
  1840. # xp_median_preimage_1_2()
  1841. # #### xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
  1842. # xp_median_preimage_3_1()
  1843. #
  1844. # #### xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
  1845. # xp_median_preimage_6_1()
  1846. # #### xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
  1847. # xp_median_preimage_6_2()
  1848. #
  1849. # #### xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
  1850. # xp_median_preimage_3_2()
  1851. #### xp 7_1: MUTAG, StructuralSP, using CONSTANT.
  1852. # xp_median_preimage_7_1()
  1853. # #### xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
  1854. # xp_median_preimage_8_1()
  1855. # #### xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
  1856. # xp_median_preimage_9_1()
  1857. # #### xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
  1858. # xp_median_preimage_2_1()
  1859. #### xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
  1860. # xp_median_preimage_5_1()
  1861. #### xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
  1862. # xp_median_preimage_4_1()

A Python package for graph kernels, graph edit distances and graph pre-image problem.