You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

structuralspKernel.py 33 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Thu Sep 27 10:56:23 2018
  5. @author: linlin
  6. @references: Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For
  7. Measuring Similarity of Shapes. InESANN 2007 Apr 25 (pp. 355-360).
  8. """
  9. import sys
  10. import time
  11. from itertools import combinations, product
  12. from functools import partial
  13. from multiprocessing import Pool
  14. from tqdm import tqdm
  15. import networkx as nx
  16. import numpy as np
  17. from pygraph.utils.graphdataset import get_dataset_attributes
  18. from pygraph.utils.parallel import parallel_gm
  19. from pygraph.utils.trie import Trie
  20. sys.path.insert(0, "../")
  21. def structuralspkernel(*args,
  22. node_label='atom',
  23. edge_weight=None,
  24. edge_label='bond_type',
  25. node_kernels=None,
  26. edge_kernels=None,
  27. compute_method='naive',
  28. n_jobs=None,
  29. verbose=True):
  30. """Calculate mean average structural shortest path kernels between graphs.
  31. Parameters
  32. ----------
  33. Gn : List of NetworkX graph
  34. List of graphs between which the kernels are calculated.
  35. /
  36. G1, G2 : NetworkX graphs
  37. 2 graphs between which the kernel is calculated.
  38. node_label : string
  39. node attribute used as label. The default node label is atom.
  40. edge_weight : string
  41. Edge attribute name corresponding to the edge weight.
  42. edge_label : string
  43. edge attribute used as label. The default edge label is bond_type.
  44. node_kernels: dict
  45. A dictionary of kernel functions for nodes, including 3 items: 'symb'
  46. for symbolic node labels, 'nsymb' for non-symbolic node labels, 'mix'
  47. for both labels. The first 2 functions take two node labels as
  48. parameters, and the 'mix' function takes 4 parameters, a symbolic and a
  49. non-symbolic label for each the two nodes. Each label is in form of 2-D
  50. dimension array (n_samples, n_features). Each function returns a number
  51. as the kernel value. Ignored when nodes are unlabeled.
  52. edge_kernels: dict
  53. A dictionary of kernel functions for edges, including 3 items: 'symb'
  54. for symbolic edge labels, 'nsymb' for non-symbolic edge labels, 'mix'
  55. for both labels. The first 2 functions take two edge labels as
  56. parameters, and the 'mix' function takes 4 parameters, a symbolic and a
  57. non-symbolic label for each the two edges. Each label is in form of 2-D
  58. dimension array (n_samples, n_features). Each function returns a number
  59. as the kernel value. Ignored when edges are unlabeled.
  60. Return
  61. ------
  62. Kmatrix : Numpy matrix
  63. Kernel matrix, each element of which is the mean average structural
  64. shortest path kernel between 2 praphs.
  65. """
  66. # pre-process
  67. Gn = args[0] if len(args) == 1 else [args[0], args[1]]
  68. weight = None
  69. if edge_weight is None:
  70. if verbose:
  71. print('\n None edge weight specified. Set all weight to 1.\n')
  72. else:
  73. try:
  74. some_weight = list(
  75. nx.get_edge_attributes(Gn[0], edge_weight).values())[0]
  76. if isinstance(some_weight, (float, int)):
  77. weight = edge_weight
  78. else:
  79. if verbose:
  80. print(
  81. '\n Edge weight with name %s is not float or integer. Set all weight to 1.\n'
  82. % edge_weight)
  83. except:
  84. if verbose:
  85. print(
  86. '\n Edge weight with name "%s" is not found in the edge attributes. Set all weight to 1.\n'
  87. % edge_weight)
  88. ds_attrs = get_dataset_attributes(
  89. Gn,
  90. attr_names=['node_labeled', 'node_attr_dim', 'edge_labeled',
  91. 'edge_attr_dim', 'is_directed'],
  92. node_label=node_label, edge_label=edge_label)
  93. start_time = time.time()
  94. # get shortest paths of each graph in Gn
  95. splist = [None] * len(Gn)
  96. pool = Pool(n_jobs)
  97. itr = zip(Gn, range(0, len(Gn)))
  98. if len(Gn) < 100 * n_jobs:
  99. chunksize = int(len(Gn) / n_jobs) + 1
  100. else:
  101. chunksize = 100
  102. # get shortest path graphs of Gn
  103. if compute_method == 'trie':
  104. getsp_partial = partial(wrapper_getSP_trie, weight, ds_attrs['is_directed'])
  105. else:
  106. getsp_partial = partial(wrapper_getSP_naive, weight, ds_attrs['is_directed'])
  107. if verbose:
  108. iterator = tqdm(pool.imap_unordered(getsp_partial, itr, chunksize),
  109. desc='getting shortest paths', file=sys.stdout)
  110. else:
  111. iterator = pool.imap_unordered(getsp_partial, itr, chunksize)
  112. for i, sp in iterator:
  113. splist[i] = sp
  114. # time.sleep(10)
  115. pool.close()
  116. pool.join()
  117. # ss = 0
  118. # ss += sys.getsizeof(splist)
  119. # for spss in splist:
  120. # ss += sys.getsizeof(spss)
  121. # for spp in spss:
  122. # ss += sys.getsizeof(spp)
  123. # time.sleep(20)
  124. # # ---- direct running, normally use single CPU core. ----
  125. # splist = []
  126. # if compute_method == 'trie':
  127. # for g in tqdm(Gn, desc='getting sp graphs', file=sys.stdout):
  128. # splist.append(get_sps_as_trie(g, weight, ds_attrs['is_directed']))
  129. # else:
  130. # for g in tqdm(Gn, desc='getting sp graphs', file=sys.stdout):
  131. # splist.append(get_shortest_paths(g, weight, ds_attrs['is_directed']))
  132. # # ---- only for the Fast Computation of Shortest Path Kernel (FCSP)
  133. # sp_ml = [0] * len(Gn) # shortest path matrices
  134. # for i in result_sp:
  135. # sp_ml[i[0]] = i[1]
  136. # edge_x_g = [[] for i in range(len(sp_ml))]
  137. # edge_y_g = [[] for i in range(len(sp_ml))]
  138. # edge_w_g = [[] for i in range(len(sp_ml))]
  139. # for idx, item in enumerate(sp_ml):
  140. # for i1 in range(len(item)):
  141. # for i2 in range(i1 + 1, len(item)):
  142. # if item[i1, i2] != np.inf:
  143. # edge_x_g[idx].append(i1)
  144. # edge_y_g[idx].append(i2)
  145. # edge_w_g[idx].append(item[i1, i2])
  146. # print(len(edge_x_g[0]))
  147. # print(len(edge_y_g[0]))
  148. # print(len(edge_w_g[0]))
  149. Kmatrix = np.zeros((len(Gn), len(Gn)))
  150. # ---- use pool.imap_unordered to parallel and track progress. ----
  151. def init_worker(spl_toshare, gs_toshare):
  152. global G_spl, G_gs
  153. G_spl = spl_toshare
  154. G_gs = gs_toshare
  155. if compute_method == 'trie':
  156. do_partial = partial(wrapper_ssp_do_trie, ds_attrs, node_label, edge_label,
  157. node_kernels, edge_kernels)
  158. parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker,
  159. glbv=(splist, Gn), n_jobs=n_jobs, verbose=verbose)
  160. else:
  161. do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label,
  162. node_kernels, edge_kernels)
  163. parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker,
  164. glbv=(splist, Gn), n_jobs=n_jobs, verbose=verbose)
  165. # # ---- use pool.map to parallel. ----
  166. # pool = Pool(n_jobs)
  167. # do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label,
  168. # node_kernels, edge_kernels)
  169. # itr = zip(combinations_with_replacement(Gn, 2),
  170. # combinations_with_replacement(splist, 2),
  171. # combinations_with_replacement(range(0, len(Gn)), 2))
  172. # for i, j, kernel in tqdm(
  173. # pool.map(do_partial, itr), desc='calculating kernels',
  174. # file=sys.stdout):
  175. # Kmatrix[i][j] = kernel
  176. # Kmatrix[j][i] = kernel
  177. # pool.close()
  178. # pool.join()
  179. # # ---- use pool.imap_unordered to parallel and track progress. ----
  180. # do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label,
  181. # node_kernels, edge_kernels)
  182. # itr = zip(combinations_with_replacement(Gn, 2),
  183. # combinations_with_replacement(splist, 2),
  184. # combinations_with_replacement(range(0, len(Gn)), 2))
  185. # len_itr = int(len(Gn) * (len(Gn) + 1) / 2)
  186. # if len_itr < 1000 * n_jobs:
  187. # chunksize = int(len_itr / n_jobs) + 1
  188. # else:
  189. # chunksize = 1000
  190. # from contextlib import closing
  191. # with closing(Pool(n_jobs)) as pool:
  192. # for i, j, kernel in tqdm(
  193. # pool.imap_unordered(do_partial, itr, 1000),
  194. # desc='calculating kernels',
  195. # file=sys.stdout):
  196. # Kmatrix[i][j] = kernel
  197. # Kmatrix[j][i] = kernel
  198. # pool.close()
  199. # pool.join()
  200. # # ---- direct running, normally use single CPU core. ----
  201. # from itertools import combinations_with_replacement
  202. # itr = combinations_with_replacement(range(0, len(Gn)), 2)
  203. # if compute_method == 'trie':
  204. # for i, j in tqdm(itr, desc='calculating kernels', file=sys.stdout):
  205. # kernel = ssp_do_trie(Gn[i], Gn[j], splist[i], splist[j],
  206. # ds_attrs, node_label, edge_label, node_kernels, edge_kernels)
  207. # Kmatrix[i][j] = kernel
  208. # Kmatrix[j][i] = kernel
  209. # else:
  210. # for i, j in tqdm(itr, desc='calculating kernels', file=sys.stdout):
  211. # kernel = structuralspkernel_do(Gn[i], Gn[j], splist[i], splist[j],
  212. # ds_attrs, node_label, edge_label, node_kernels, edge_kernels)
  213. # # if(kernel > 1):
  214. # # print("error here ")
  215. # Kmatrix[i][j] = kernel
  216. # Kmatrix[j][i] = kernel
  217. run_time = time.time() - start_time
  218. if verbose:
  219. print("\n --- shortest path kernel matrix of size %d built in %s seconds ---"
  220. % (len(Gn), run_time))
  221. return Kmatrix, run_time
  222. def structuralspkernel_do(g1, g2, spl1, spl2, ds_attrs, node_label, edge_label,
  223. node_kernels, edge_kernels):
  224. kernel = 0
  225. # First, compute shortest path matrices, method borrowed from FCSP.
  226. vk_dict = getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs)
  227. # Then, compute kernels between all pairs of edges, which is an idea of
  228. # extension of FCSP. It suits sparse graphs, which is the most case we
  229. # went though. For dense graphs, this would be slow.
  230. ek_dict = getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs)
  231. # compute graph kernels
  232. if vk_dict:
  233. if ek_dict:
  234. for p1, p2 in product(spl1, spl2):
  235. if len(p1) == len(p2):
  236. kpath = vk_dict[(p1[0], p2[0])]
  237. if kpath:
  238. for idx in range(1, len(p1)):
  239. kpath *= vk_dict[(p1[idx], p2[idx])] * \
  240. ek_dict[((p1[idx-1], p1[idx]),
  241. (p2[idx-1], p2[idx]))]
  242. if not kpath:
  243. break
  244. kernel += kpath # add up kernels of all paths
  245. else:
  246. for p1, p2 in product(spl1, spl2):
  247. if len(p1) == len(p2):
  248. kpath = vk_dict[(p1[0], p2[0])]
  249. if kpath:
  250. for idx in range(1, len(p1)):
  251. kpath *= vk_dict[(p1[idx], p2[idx])]
  252. if not kpath:
  253. break
  254. kernel += kpath # add up kernels of all paths
  255. else:
  256. if ek_dict:
  257. for p1, p2 in product(spl1, spl2):
  258. if len(p1) == len(p2):
  259. if len(p1) == 0:
  260. kernel += 1
  261. else:
  262. kpath = 1
  263. for idx in range(0, len(p1) - 1):
  264. kpath *= ek_dict[((p1[idx], p1[idx+1]),
  265. (p2[idx], p2[idx+1]))]
  266. if not kpath:
  267. break
  268. kernel += kpath # add up kernels of all paths
  269. else:
  270. for p1, p2 in product(spl1, spl2):
  271. if len(p1) == len(p2):
  272. kernel += 1
  273. kernel = kernel / (len(spl1) * len(spl2)) # calculate mean average
  274. # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation
  275. # # compute vertex kernel matrix
  276. # try:
  277. # vk_mat = np.zeros((nx.number_of_nodes(g1),
  278. # nx.number_of_nodes(g2)))
  279. # g1nl = enumerate(g1.nodes(data=True))
  280. # g2nl = enumerate(g2.nodes(data=True))
  281. # for i1, n1 in g1nl:
  282. # for i2, n2 in g2nl:
  283. # vk_mat[i1][i2] = kn(
  284. # n1[1][node_label], n2[1][node_label],
  285. # [n1[1]['attributes']], [n2[1]['attributes']])
  286. # range1 = range(0, len(edge_w_g[i]))
  287. # range2 = range(0, len(edge_w_g[j]))
  288. # for i1 in range1:
  289. # x1 = edge_x_g[i][i1]
  290. # y1 = edge_y_g[i][i1]
  291. # w1 = edge_w_g[i][i1]
  292. # for i2 in range2:
  293. # x2 = edge_x_g[j][i2]
  294. # y2 = edge_y_g[j][i2]
  295. # w2 = edge_w_g[j][i2]
  296. # ke = (w1 == w2)
  297. # if ke > 0:
  298. # kn1 = vk_mat[x1][x2] * vk_mat[y1][y2]
  299. # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2]
  300. # Kmatrix += kn1 + kn2
  301. return kernel
  302. def wrapper_ssp_do(ds_attrs, node_label, edge_label, node_kernels,
  303. edge_kernels, itr):
  304. i = itr[0]
  305. j = itr[1]
  306. return i, j, structuralspkernel_do(G_gs[i], G_gs[j], G_spl[i], G_spl[j],
  307. ds_attrs, node_label, edge_label,
  308. node_kernels, edge_kernels)
  309. def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label,
  310. node_kernels, edge_kernels):
  311. # # traverse all paths in graph1. Deep-first search is applied.
  312. # def traverseBothTrie(root, trie2, kernel, pcurrent=[]):
  313. # for key, node in root['children'].items():
  314. # pcurrent.append(key)
  315. # if node['isEndOfWord']:
  316. # # print(node['count'])
  317. # traverseTrie2(trie2.root, pcurrent, kernel,
  318. # pcurrent=[])
  319. # if node['children'] != {}:
  320. # traverseBothTrie(node, trie2, kernel, pcurrent)
  321. # else:
  322. # del pcurrent[-1]
  323. # if pcurrent != []:
  324. # del pcurrent[-1]
  325. #
  326. #
  327. # # traverse all paths in graph2 and find out those that are not in
  328. # # graph1. Deep-first search is applied.
  329. # def traverseTrie2(root, p1, kernel, pcurrent=[]):
  330. # for key, node in root['children'].items():
  331. # pcurrent.append(key)
  332. # if node['isEndOfWord']:
  333. # # print(node['count'])
  334. # kernel[0] += computePathKernel(p1, pcurrent, vk_dict, ek_dict)
  335. # if node['children'] != {}:
  336. # traverseTrie2(node, p1, kernel, pcurrent)
  337. # else:
  338. # del pcurrent[-1]
  339. # if pcurrent != []:
  340. # del pcurrent[-1]
  341. #
  342. #
  343. # kernel = [0]
  344. #
  345. # # First, compute shortest path matrices, method borrowed from FCSP.
  346. # vk_dict = getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs)
  347. # # Then, compute kernels between all pairs of edges, which is an idea of
  348. # # extension of FCSP. It suits sparse graphs, which is the most case we
  349. # # went though. For dense graphs, this would be slow.
  350. # ek_dict = getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs)
  351. #
  352. # # compute graph kernels
  353. # traverseBothTrie(trie1[0].root, trie2[0], kernel)
  354. #
  355. # kernel = kernel[0] / (trie1[1] * trie2[1]) # calculate mean average
  356. # # traverse all paths in graph1. Deep-first search is applied.
  357. # def traverseBothTrie(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  358. # for key, node in root['children'].items():
  359. # pcurrent.append(key)
  360. # if node['isEndOfWord']:
  361. # # print(node['count'])
  362. # traverseTrie2(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  363. # pcurrent=[])
  364. # if node['children'] != {}:
  365. # traverseBothTrie(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  366. # else:
  367. # del pcurrent[-1]
  368. # if pcurrent != []:
  369. # del pcurrent[-1]
  370. #
  371. #
  372. # # traverse all paths in graph2 and find out those that are not in
  373. # # graph1. Deep-first search is applied.
  374. # def traverseTrie2(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  375. # for key, node in root['children'].items():
  376. # pcurrent.append(key)
  377. # if node['isEndOfWord']:
  378. # # print(node['count'])
  379. # kernel[0] += computePathKernel(p1, pcurrent, vk_dict, ek_dict)
  380. # if node['children'] != {}:
  381. # traverseTrie2(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  382. # else:
  383. # del pcurrent[-1]
  384. # if pcurrent != []:
  385. # del pcurrent[-1]
  386. kernel = [0]
  387. # First, compute shortest path matrices, method borrowed from FCSP.
  388. vk_dict = getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs)
  389. # Then, compute kernels between all pairs of edges, which is an idea of
  390. # extension of FCSP. It suits sparse graphs, which is the most case we
  391. # went though. For dense graphs, this would be slow.
  392. ek_dict = getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs)
  393. # compute graph kernels
  394. # traverseBothTrie(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  395. if vk_dict:
  396. if ek_dict:
  397. traverseBothTriem(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  398. else:
  399. traverseBothTriev(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  400. else:
  401. if ek_dict:
  402. traverseBothTriee(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  403. else:
  404. traverseBothTrieu(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  405. kernel = kernel[0] / (trie1[1] * trie2[1]) # calculate mean average
  406. return kernel
  407. def wrapper_ssp_do_trie(ds_attrs, node_label, edge_label, node_kernels,
  408. edge_kernels, itr):
  409. i = itr[0]
  410. j = itr[1]
  411. return i, j, ssp_do_trie(G_gs[i], G_gs[j], G_spl[i], G_spl[j], ds_attrs,
  412. node_label, edge_label, node_kernels, edge_kernels)
  413. def getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs):
  414. # compute shortest path matrices, method borrowed from FCSP.
  415. vk_dict = {} # shortest path matrices dict
  416. if ds_attrs['node_labeled']:
  417. # node symb and non-synb labeled
  418. if ds_attrs['node_attr_dim'] > 0:
  419. kn = node_kernels['mix']
  420. for n1, n2 in product(
  421. g1.nodes(data=True), g2.nodes(data=True)):
  422. vk_dict[(n1[0], n2[0])] = kn(
  423. n1[1][node_label], n2[1][node_label],
  424. n1[1]['attributes'], n2[1]['attributes'])
  425. # node symb labeled
  426. else:
  427. kn = node_kernels['symb']
  428. for n1 in g1.nodes(data=True):
  429. for n2 in g2.nodes(data=True):
  430. vk_dict[(n1[0], n2[0])] = kn(n1[1][node_label],
  431. n2[1][node_label])
  432. else:
  433. # node non-synb labeled
  434. if ds_attrs['node_attr_dim'] > 0:
  435. kn = node_kernels['nsymb']
  436. for n1 in g1.nodes(data=True):
  437. for n2 in g2.nodes(data=True):
  438. vk_dict[(n1[0], n2[0])] = kn(n1[1]['attributes'],
  439. n2[1]['attributes'])
  440. # node unlabeled
  441. else:
  442. pass
  443. return vk_dict
  444. def getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs):
  445. # compute kernels between all pairs of edges, which is an idea of
  446. # extension of FCSP. It suits sparse graphs, which is the most case we
  447. # went though. For dense graphs, this would be slow.
  448. ek_dict = {} # dict of edge kernels
  449. if ds_attrs['edge_labeled']:
  450. # edge symb and non-synb labeled
  451. if ds_attrs['edge_attr_dim'] > 0:
  452. ke = edge_kernels['mix']
  453. for e1, e2 in product(
  454. g1.edges(data=True), g2.edges(data=True)):
  455. ek_temp = ke(e1[2][edge_label], e2[2][edge_label],
  456. e1[2]['attributes'], e2[2]['attributes'])
  457. ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
  458. ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
  459. ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
  460. ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
  461. # edge symb labeled
  462. else:
  463. ke = edge_kernels['symb']
  464. for e1 in g1.edges(data=True):
  465. for e2 in g2.edges(data=True):
  466. ek_temp = ke(e1[2][edge_label], e2[2][edge_label])
  467. ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
  468. ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
  469. ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
  470. ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
  471. else:
  472. # edge non-synb labeled
  473. if ds_attrs['edge_attr_dim'] > 0:
  474. ke = edge_kernels['nsymb']
  475. for e1 in g1.edges(data=True):
  476. for e2 in g2.edges(data=True):
  477. ek_temp = ke(e1[2]['attributes'], e2[2]['attributes'])
  478. ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
  479. ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
  480. ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
  481. ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
  482. # edge unlabeled
  483. else:
  484. pass
  485. return ek_dict
  486. # traverse all paths in graph1. Deep-first search is applied.
  487. def traverseBothTriem(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  488. for key, node in root['children'].items():
  489. pcurrent.append(key)
  490. if node['isEndOfWord']:
  491. # print(node['count'])
  492. traverseTrie2m(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  493. pcurrent=[])
  494. if node['children'] != {}:
  495. traverseBothTriem(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  496. else:
  497. del pcurrent[-1]
  498. if pcurrent != []:
  499. del pcurrent[-1]
  500. # traverse all paths in graph2 and find out those that are not in
  501. # graph1. Deep-first search is applied.
  502. def traverseTrie2m(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  503. for key, node in root['children'].items():
  504. pcurrent.append(key)
  505. if node['isEndOfWord']:
  506. # print(node['count'])
  507. if len(p1) == len(pcurrent):
  508. kpath = vk_dict[(p1[0], pcurrent[0])]
  509. if kpath:
  510. for idx in range(1, len(p1)):
  511. kpath *= vk_dict[(p1[idx], pcurrent[idx])] * \
  512. ek_dict[((p1[idx-1], p1[idx]),
  513. (pcurrent[idx-1], pcurrent[idx]))]
  514. if not kpath:
  515. break
  516. kernel[0] += kpath # add up kernels of all paths
  517. if node['children'] != {}:
  518. traverseTrie2m(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  519. else:
  520. del pcurrent[-1]
  521. if pcurrent != []:
  522. del pcurrent[-1]
  523. # traverse all paths in graph1. Deep-first search is applied.
  524. def traverseBothTriev(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  525. for key, node in root['children'].items():
  526. pcurrent.append(key)
  527. if node['isEndOfWord']:
  528. # print(node['count'])
  529. traverseTrie2v(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  530. pcurrent=[])
  531. if node['children'] != {}:
  532. traverseBothTriev(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  533. else:
  534. del pcurrent[-1]
  535. if pcurrent != []:
  536. del pcurrent[-1]
  537. # traverse all paths in graph2 and find out those that are not in
  538. # graph1. Deep-first search is applied.
  539. def traverseTrie2v(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  540. for key, node in root['children'].items():
  541. pcurrent.append(key)
  542. if node['isEndOfWord']:
  543. # print(node['count'])
  544. if len(p1) == len(pcurrent):
  545. kpath = vk_dict[(p1[0], pcurrent[0])]
  546. if kpath:
  547. for idx in range(1, len(p1)):
  548. kpath *= vk_dict[(p1[idx], pcurrent[idx])]
  549. if not kpath:
  550. break
  551. kernel[0] += kpath # add up kernels of all paths
  552. if node['children'] != {}:
  553. traverseTrie2v(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  554. else:
  555. del pcurrent[-1]
  556. if pcurrent != []:
  557. del pcurrent[-1]
  558. # traverse all paths in graph1. Deep-first search is applied.
  559. def traverseBothTriee(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  560. for key, node in root['children'].items():
  561. pcurrent.append(key)
  562. if node['isEndOfWord']:
  563. # print(node['count'])
  564. traverseTrie2e(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  565. pcurrent=[])
  566. if node['children'] != {}:
  567. traverseBothTriee(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  568. else:
  569. del pcurrent[-1]
  570. if pcurrent != []:
  571. del pcurrent[-1]
  572. # traverse all paths in graph2 and find out those that are not in
  573. # graph1. Deep-first search is applied.
  574. def traverseTrie2e(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  575. for key, node in root['children'].items():
  576. pcurrent.append(key)
  577. if node['isEndOfWord']:
  578. # print(node['count'])
  579. if len(p1) == len(pcurrent):
  580. if len(p1) == 0:
  581. kernel += 1
  582. else:
  583. kpath = 1
  584. for idx in range(0, len(p1) - 1):
  585. kpath *= ek_dict[((p1[idx], p1[idx+1]),
  586. (pcurrent[idx], pcurrent[idx+1]))]
  587. if not kpath:
  588. break
  589. kernel[0] += kpath # add up kernels of all paths
  590. if node['children'] != {}:
  591. traverseTrie2e(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  592. else:
  593. del pcurrent[-1]
  594. if pcurrent != []:
  595. del pcurrent[-1]
  596. # traverse all paths in graph1. Deep-first search is applied.
  597. def traverseBothTrieu(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  598. for key, node in root['children'].items():
  599. pcurrent.append(key)
  600. if node['isEndOfWord']:
  601. # print(node['count'])
  602. traverseTrie2u(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  603. pcurrent=[])
  604. if node['children'] != {}:
  605. traverseBothTrieu(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  606. else:
  607. del pcurrent[-1]
  608. if pcurrent != []:
  609. del pcurrent[-1]
  610. # traverse all paths in graph2 and find out those that are not in
  611. # graph1. Deep-first search is applied.
  612. def traverseTrie2u(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  613. for key, node in root['children'].items():
  614. pcurrent.append(key)
  615. if node['isEndOfWord']:
  616. # print(node['count'])
  617. if len(p1) == len(pcurrent):
  618. kernel[0] += 1
  619. if node['children'] != {}:
  620. traverseTrie2u(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  621. else:
  622. del pcurrent[-1]
  623. if pcurrent != []:
  624. del pcurrent[-1]
  625. #def computePathKernel(p1, p2, vk_dict, ek_dict):
  626. # kernel = 0
  627. # if vk_dict:
  628. # if ek_dict:
  629. # if len(p1) == len(p2):
  630. # kpath = vk_dict[(p1[0], p2[0])]
  631. # if kpath:
  632. # for idx in range(1, len(p1)):
  633. # kpath *= vk_dict[(p1[idx], p2[idx])] * \
  634. # ek_dict[((p1[idx-1], p1[idx]),
  635. # (p2[idx-1], p2[idx]))]
  636. # if not kpath:
  637. # break
  638. # kernel += kpath # add up kernels of all paths
  639. # else:
  640. # if len(p1) == len(p2):
  641. # kpath = vk_dict[(p1[0], p2[0])]
  642. # if kpath:
  643. # for idx in range(1, len(p1)):
  644. # kpath *= vk_dict[(p1[idx], p2[idx])]
  645. # if not kpath:
  646. # break
  647. # kernel += kpath # add up kernels of all paths
  648. # else:
  649. # if ek_dict:
  650. # if len(p1) == len(p2):
  651. # if len(p1) == 0:
  652. # kernel += 1
  653. # else:
  654. # kpath = 1
  655. # for idx in range(0, len(p1) - 1):
  656. # kpath *= ek_dict[((p1[idx], p1[idx+1]),
  657. # (p2[idx], p2[idx+1]))]
  658. # if not kpath:
  659. # break
  660. # kernel += kpath # add up kernels of all paths
  661. # else:
  662. # if len(p1) == len(p2):
  663. # kernel += 1
  664. #
  665. # return kernel
  666. def get_shortest_paths(G, weight, directed):
  667. """Get all shortest paths of a graph.
  668. Parameters
  669. ----------
  670. G : NetworkX graphs
  671. The graphs whose paths are calculated.
  672. weight : string/None
  673. edge attribute used as weight to calculate the shortest path.
  674. directed: boolean
  675. Whether graph is directed.
  676. Return
  677. ------
  678. sp : list of list
  679. List of shortest paths of the graph, where each path is represented by a list of nodes.
  680. """
  681. sp = []
  682. for n1, n2 in combinations(G.nodes(), 2):
  683. try:
  684. spltemp = list(nx.all_shortest_paths(G, n1, n2, weight=weight))
  685. except nx.NetworkXNoPath: # nodes not connected
  686. # sp.append([])
  687. pass
  688. else:
  689. sp += spltemp
  690. # each edge walk is counted twice, starting from both its extreme nodes.
  691. if not directed:
  692. sp += [sptemp[::-1] for sptemp in spltemp]
  693. # add single nodes as length 0 paths.
  694. sp += [[n] for n in G.nodes()]
  695. return sp
  696. def wrapper_getSP_naive(weight, directed, itr_item):
  697. g = itr_item[0]
  698. i = itr_item[1]
  699. return i, get_shortest_paths(g, weight, directed)
  700. def get_sps_as_trie(G, weight, directed):
  701. """Get all shortest paths of a graph and insert them into a trie.
  702. Parameters
  703. ----------
  704. G : NetworkX graphs
  705. The graphs whose paths are calculated.
  706. weight : string/None
  707. edge attribute used as weight to calculate the shortest path.
  708. directed: boolean
  709. Whether graph is directed.
  710. Return
  711. ------
  712. sp : list of list
  713. List of shortest paths of the graph, where each path is represented by a list of nodes.
  714. """
  715. sptrie = Trie()
  716. lensp = 0
  717. for n1, n2 in combinations(G.nodes(), 2):
  718. try:
  719. spltemp = list(nx.all_shortest_paths(G, n1, n2, weight=weight))
  720. except nx.NetworkXNoPath: # nodes not connected
  721. pass
  722. else:
  723. lensp += len(spltemp)
  724. if not directed:
  725. lensp += len(spltemp)
  726. for sp in spltemp:
  727. sptrie.insertWord(sp)
  728. # each edge walk is counted twice, starting from both its extreme nodes.
  729. if not directed:
  730. sptrie.insertWord(sp[::-1])
  731. # add single nodes as length 0 paths.
  732. for n in G.nodes():
  733. sptrie.insertWord([n])
  734. return sptrie, lensp + nx.number_of_nodes(G)
  735. def wrapper_getSP_trie(weight, directed, itr_item):
  736. g = itr_item[0]
  737. i = itr_item[1]
  738. return i, get_sps_as_trie(g, weight, directed)

A Python package for graph kernels, graph edit distances and graph pre-image problem.