|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166 |
-
-
- <html>
- <head>
- <title>LIBSVM FAQ</title>
- </head>
- <body bgcolor="#ffffcc">
-
- <a name="_TOP"><b><h1><a
- href=http://www.csie.ntu.edu.tw/~cjlin/libsvm>LIBSVM</a> FAQ </h1></b></a>
- <b>last modified : </b>
- Tue, 20 Oct 2015 13:43:40 GMT
- <class="categories">
- <li><a
- href="#_TOP">All Questions</a>(84)</li>
- <ul><b>
- <li><a
- href="#/Q01:_Some_sample_uses_of_libsvm">Q01:_Some_sample_uses_of_libsvm</a>(2)</li>
- <li><a
- href="#/Q02:_Installation_and_running_the_program">Q02:_Installation_and_running_the_program</a>(13)</li>
- <li><a
- href="#/Q03:_Data_preparation">Q03:_Data_preparation</a>(7)</li>
- <li><a
- href="#/Q04:_Training_and_prediction">Q04:_Training_and_prediction</a>(29)</li>
- <li><a
- href="#/Q05:_Cross_validation_and_parameter_selection">Q05:_Cross_validation_and_parameter_selection</a>(9)</li>
- <li><a
- href="#/Q06:_Probability_outputs">Q06:_Probability_outputs</a>(3)</li>
- <li><a
- href="#/Q07:_Graphic_interface">Q07:_Graphic_interface</a>(3)</li>
- <li><a
- href="#/Q08:_Java_version_of_libsvm">Q08:_Java_version_of_libsvm</a>(4)</li>
- <li><a
- href="#/Q09:_Python_interface">Q09:_Python_interface</a>(1)</li>
- <li><a
- href="#/Q10:_MATLAB_OCTAVE_interface">Q10:_MATLAB_OCTAVE_interface</a>(13)</li>
- </b></ul>
- </li>
-
- <ul><ul class="headlines">
- <li class="headlines_item"><a href="#faq101">Some courses which have used libsvm as a tool</a></li>
- <li class="headlines_item"><a href="#faq102">Some applications/tools which have used libsvm </a></li>
- <li class="headlines_item"><a href="#f201">Where can I find documents/videos of libsvm ?</a></li>
- <li class="headlines_item"><a href="#f202">Where are change log and earlier versions?</a></li>
- <li class="headlines_item"><a href="#f203">How to cite LIBSVM?</a></li>
- <li class="headlines_item"><a href="#f204">I would like to use libsvm in my software. Is there any license problem?</a></li>
- <li class="headlines_item"><a href="#f205">Is there a repository of additional tools based on libsvm?</a></li>
- <li class="headlines_item"><a href="#f206">On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </a></li>
- <li class="headlines_item"><a href="#f207">I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</a></li>
- <li class="headlines_item"><a href="#f208">I am an MS windows user but why only one (svm-toy) of those precompiled .exe actually runs ? </a></li>
- <li class="headlines_item"><a href="#f209">What is the difference between "." and "*" outputed during training? </a></li>
- <li class="headlines_item"><a href="#f210">Why occasionally the program (including MATLAB or other interfaces) crashes and gives a segmentation fault?</a></li>
- <li class="headlines_item"><a href="#f211">How to build a dynamic library (.dll file) on MS windows?</a></li>
- <li class="headlines_item"><a href="#f212">On some systems (e.g., Ubuntu), compiling LIBSVM gives many warning messages. Is this a problem and how to disable the warning message?</a></li>
- <li class="headlines_item"><a href="#f213">In LIBSVM, why you don't use certain C/C++ library functions to make the code shorter?</a></li>
- <li class="headlines_item"><a href="#f301">Why sometimes not all attributes of a data appear in the training/model files ?</a></li>
- <li class="headlines_item"><a href="#f302">What if my data are non-numerical ?</a></li>
- <li class="headlines_item"><a href="#f303">Why do you consider sparse format ? Will the training of dense data be much slower ?</a></li>
- <li class="headlines_item"><a href="#f304">Why sometimes the last line of my data is not read by svm-train?</a></li>
- <li class="headlines_item"><a href="#f305">Is there a program to check if my data are in the correct format?</a></li>
- <li class="headlines_item"><a href="#f306">May I put comments in data files?</a></li>
- <li class="headlines_item"><a href="#f307">How to convert other data formats to LIBSVM format?</a></li>
- <li class="headlines_item"><a href="#f401">The output of training C-SVM is like the following. What do they mean?</a></li>
- <li class="headlines_item"><a href="#f402">Can you explain more about the model file?</a></li>
- <li class="headlines_item"><a href="#f403">Should I use float or double to store numbers in the cache ?</a></li>
- <li class="headlines_item"><a href="#f405">Does libsvm have special treatments for linear SVM?</a></li>
- <li class="headlines_item"><a href="#f406">The number of free support vectors is large. What should I do?</a></li>
- <li class="headlines_item"><a href="#f407">Should I scale training and testing data in a similar way?</a></li>
- <li class="headlines_item"><a href="#f4071">On windows sometimes svm-scale.exe generates some non-ASCII data not good for training/prediction?</a></li>
- <li class="headlines_item"><a href="#f408">Does it make a big difference if I scale each attribute to [0,1] instead of [-1,1]?</a></li>
- <li class="headlines_item"><a href="#f409">The prediction rate is low. How could I improve it?</a></li>
- <li class="headlines_item"><a href="#f410">My data are unbalanced. Could libsvm handle such problems?</a></li>
- <li class="headlines_item"><a href="#f411">What is the difference between nu-SVC and C-SVC?</a></li>
- <li class="headlines_item"><a href="#f412">The program keeps running (without showing any output). What should I do?</a></li>
- <li class="headlines_item"><a href="#f413">The program keeps running (with output, i.e. many dots). What should I do?</a></li>
- <li class="headlines_item"><a href="#f414">The training time is too long. What should I do?</a></li>
- <li class="headlines_item"><a href="#f4141">Does shrinking always help?</a></li>
- <li class="headlines_item"><a href="#f415">How do I get the decision value(s)?</a></li>
- <li class="headlines_item"><a href="#f4151">How do I get the distance between a point and the hyperplane?</a></li>
- <li class="headlines_item"><a href="#f416">On 32-bit machines, if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</a></li>
- <li class="headlines_item"><a href="#f417">How do I disable screen output of svm-train?</a></li>
- <li class="headlines_item"><a href="#f418">I would like to use my own kernel. Any example? In svm.cpp, there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</a></li>
- <li class="headlines_item"><a href="#f419">What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method?</a></li>
- <li class="headlines_item"><a href="#f422">I would like to solve L2-loss SVM (i.e., error term is quadratic). How should I modify the code ?</a></li>
- <li class="headlines_item"><a href="#f425">In one-class SVM, parameter nu should be an upper bound of the training error rate. Why sometimes I get a training error rate bigger than nu?</a></li>
- <li class="headlines_item"><a href="#f427">Why the code gives NaN (not a number) results?</a></li>
- <li class="headlines_item"><a href="#f430">Why the sign of predicted labels and decision values are sometimes reversed?</a></li>
- <li class="headlines_item"><a href="#f431">I don't know class labels of test data. What should I put in the first column of the test file?</a></li>
- <li class="headlines_item"><a href="#f432">How can I use OpenMP to parallelize LIBSVM on a multicore/shared-memory computer?</a></li>
- <li class="headlines_item"><a href="#f433">How could I know which training instances are support vectors?</a></li>
- <li class="headlines_item"><a href="#f434">Why sv_indices (indices of support vectors) are not stored in the saved model file?</a></li>
- <li class="headlines_item"><a href="#f501">After doing cross validation, why there is no model file outputted ?</a></li>
- <li class="headlines_item"><a href="#f502">Why my cross-validation results are different from those in the Practical Guide?</a></li>
- <li class="headlines_item"><a href="#f503">On some systems CV accuracy is the same in several runs. How could I use different data partitions? In other words, how do I set random seed in LIBSVM?</a></li>
- <li class="headlines_item"><a href="#f504">Why on windows sometimes grid.py fails?</a></li>
- <li class="headlines_item"><a href="#f505">Why grid.py/easy.py sometimes generates the following warning message?</a></li>
- <li class="headlines_item"><a href="#f506">How do I choose the kernel?</a></li>
- <li class="headlines_item"><a href="#f507">How does LIBSVM perform parameter selection for multi-class problems? </a></li>
- <li class="headlines_item"><a href="#f508">How do I choose parameters for one-class SVM as training data are in only one class?</a></li>
- <li class="headlines_item"><a href="#f509">Instead of grid.py, what if I would like to conduct parameter selection using other programmin languages?</a></li>
- <li class="headlines_item"><a href="#f425">Why training a probability model (i.e., -b 1) takes a longer time?</a></li>
- <li class="headlines_item"><a href="#f426">Why using the -b option does not give me better accuracy?</a></li>
- <li class="headlines_item"><a href="#f427">Why using svm-predict -b 0 and -b 1 gives different accuracy values?</a></li>
- <li class="headlines_item"><a href="#f501">How can I save images drawn by svm-toy?</a></li>
- <li class="headlines_item"><a href="#f502">I press the "load" button to load data points but why svm-toy does not draw them ?</a></li>
- <li class="headlines_item"><a href="#f503">I would like svm-toy to handle more than three classes of data, what should I do ?</a></li>
- <li class="headlines_item"><a href="#f601">What is the difference between Java version and C++ version of libsvm?</a></li>
- <li class="headlines_item"><a href="#f602">Is the Java version significantly slower than the C++ version?</a></li>
- <li class="headlines_item"><a href="#f603">While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</a></li>
- <li class="headlines_item"><a href="#f604">Why you have the main source file svm.m4 and then transform it to svm.java?</a></li>
- <li class="headlines_item"><a href="#f704">Except the python-C++ interface provided, could I use Jython to call libsvm ?</a></li>
- <li class="headlines_item"><a href="#f801">I compile the MATLAB interface without problem, but why errors occur while running it?</a></li>
- <li class="headlines_item"><a href="#f8011">On 64bit Windows I compile the MATLAB interface without problem, but why errors occur while running it?</a></li>
- <li class="headlines_item"><a href="#f802">Does the MATLAB interface provide a function to do scaling?</a></li>
- <li class="headlines_item"><a href="#f803">How could I use MATLAB interface for parameter selection?</a></li>
- <li class="headlines_item"><a href="#f8031">I use MATLAB parallel programming toolbox on a multi-core environment for parameter selection. Why the program is even slower?</a></li>
- <li class="headlines_item"><a href="#f8032">How to use LIBSVM with OpenMP under MATLAB/Octave?</a></li>
- <li class="headlines_item"><a href="#f804">How could I generate the primal variable w of linear SVM?</a></li>
- <li class="headlines_item"><a href="#f805">Is there an OCTAVE interface for libsvm?</a></li>
- <li class="headlines_item"><a href="#f806">How to handle the name conflict between svmtrain in the libsvm matlab interface and that in MATLAB bioinformatics toolbox?</a></li>
- <li class="headlines_item"><a href="#f807">On Windows I got an error message "Invalid MEX-file: Specific module not found" when running the pre-built MATLAB interface in the windows sub-directory. What should I do?</a></li>
- <li class="headlines_item"><a href="#f808">LIBSVM supports 1-vs-1 multi-class classification. If instead I would like to use 1-vs-rest, how to implement it using MATLAB interface?</a></li>
- <li class="headlines_item"><a href="#f809">I tried to install matlab interface on mac, but failed. What should I do?</a></li>
- <li class="headlines_item"><a href="#f810">I tried to install octave interface on windows, but failed. What should I do?</a></li>
- </ul></ul>
-
-
- <hr size="5" noshade />
- <p/>
-
- <a name="/Q01:_Some_sample_uses_of_libsvm"></a>
- <a name="faq101"><b>Q: Some courses which have used libsvm as a tool</b></a>
- <br/>
- <ul>
- <li><a href=http://lmb.informatik.uni-freiburg.de/lectures/svm_seminar/>Institute for Computer Science,
- Faculty of Applied Science, University of Freiburg, Germany
- </a>
- <li> <a href=http://www.cs.vu.nl/~elena/ml.html>
- Division of Mathematics and Computer Science.
- Faculteit der Exacte Wetenschappen
- Vrije Universiteit, The Netherlands. </a>
- <li>
- <a href=http://www.cae.wisc.edu/~ece539/matlab/>
- Electrical and Computer Engineering Department,
- University of Wisconsin-Madison
- </a>
- <li>
- <a href=http://www.hpl.hp.com/personal/Carl_Staelin/cs236601/project.html>
- Technion (Israel Institute of Technology), Israel.
- <li>
- <a href=http://www.cise.ufl.edu/~fu/learn.html>
- Computer and Information Sciences Dept., University of Florida</a>
- <li>
- <a href=http://www.uonbi.ac.ke/acad_depts/ics/course_material/machine_learning/ML_and_DM_Resources.html>
- The Institute of Computer Science,
- University of Nairobi, Kenya.</a>
- <li>
- <a href=http://cerium.raunvis.hi.is/~tpr/courseware/svm/hugbunadur.html>
- Applied Mathematics and Computer Science, University of Iceland.
- <li>
- <a href=http://chicago05.mlss.cc/tiki/tiki-read_article.php?articleId=2>
- SVM tutorial in machine learning
- summer school, University of Chicago, 2005.
- </a>
- </ul>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q01:_Some_sample_uses_of_libsvm"></a>
- <a name="faq102"><b>Q: Some applications/tools which have used libsvm </b></a>
- <br/>
- (and maybe liblinear).
- <ul>
- <li>
- <a href=http://people.csail.mit.edu/jjl/libpmk/>LIBPMK: A Pyramid Match Toolkit</a>
- </li>
- <li><a href=http://maltparser.org/>Maltparser</a>:
- a system for data-driven dependency parsing
- </li>
- <li>
- <a href=http://www.pymvpa.org/>PyMVPA: python tool for classifying neuroimages</a>
- </li>
- <li>
- <a href=http://solpro.proteomics.ics.uci.edu/>
- SOLpro: protein solubility predictor
- </a>
- </li>
- <li>
- <a href=http://bdval.campagnelab.org>
- BDVal</a>: biomarker discovery in high-throughput datasets.
- </li>
- <li><a href=http://johel.m.free.fr/demo_045.htm>
- Realtime object recognition</a>
- </li>
- <li><a href=http://scikit-learn.sourceforge.net/>
- scikits.learn: machine learning in Python</a>
- </li>
- </ul>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q02:_Installation_and_running_the_program"></a>
- <a name="f201"><b>Q: Where can I find documents/videos of libsvm ?</b></a>
- <br/>
- <p>
-
- <ul>
- <li>
- Official implementation document:
- <br>
- C.-C. Chang and
- C.-J. Lin.
- LIBSVM
- : a library for support vector machines.
- ACM Transactions on Intelligent
- Systems and Technology, 2:27:1--27:27, 2011.
- <a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">pdf</a>, <a href=http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.ps.gz>ps.gz</a>,
- <a href=http://portal.acm.org/citation.cfm?id=1961199&CFID=29950432&CFTOKEN=30974232>ACM digital lib</a>.
-
-
- <li> Instructions for using LIBSVM are in the README files in the main directory and some sub-directories.
- <br>
- README in the main directory: details all options, data format, and library calls.
- <br>
- tools/README: parameter selection and other tools
- <li>
- A guide for beginners:
- <br>
- C.-W. Hsu, C.-C. Chang, and
- C.-J. Lin.
- <A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
- A practical guide to support vector classification
- </A>
- <li> An <a href=http://www.youtube.com/watch?v=gePWtNAQcK8>introductory video</a>
- for windows users.
-
- </ul>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q02:_Installation_and_running_the_program"></a>
- <a name="f202"><b>Q: Where are change log and earlier versions?</b></a>
- <br/>
- <p>See <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/log">the change log</a>.
-
- <p> You can download earlier versions
- <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles">here</a>.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q02:_Installation_and_running_the_program"></a>
- <a name="f203"><b>Q: How to cite LIBSVM?</b></a>
- <br/>
- <p>
- Please cite the following paper:
- <p>
- Chih-Chung Chang and Chih-Jen Lin, LIBSVM
- : a library for support vector machines.
- ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011.
- Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
- <p>
- The bibtex format is
- <pre>
- @article{CC01a,
- author = {Chang, Chih-Chung and Lin, Chih-Jen},
- title = {{LIBSVM}: A library for support vector machines},
- journal = {ACM Transactions on Intelligent Systems and Technology},
- volume = {2},
- issue = {3},
- year = {2011},
- pages = {27:1--27:27},
- note = {Software available at \url{http://www.csie.ntu.edu.tw/~cjlin/libsvm}}
- }
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q02:_Installation_and_running_the_program"></a>
- <a name="f204"><b>Q: I would like to use libsvm in my software. Is there any license problem?</b></a>
- <br/>
- <p>
- We have "the modified BSD license,"
- so it is very easy to
- use libsvm in your software.
- Please check the COPYRIGHT file in detail. Basically
- you need to
- <ol>
- <li>
- Clearly indicate that LIBSVM is used.
- </li>
- <li>
- Retain the LIBSVM COPYRIGHT file in your software.
- </li>
- </ol>
- It can also be used in commercial products.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q02:_Installation_and_running_the_program"></a>
- <a name="f205"><b>Q: Is there a repository of additional tools based on libsvm?</b></a>
- <br/>
- <p>
- Yes, see <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvmtools">libsvm
- tools</a>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q02:_Installation_and_running_the_program"></a>
- <a name="f206"><b>Q: On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </b></a>
- <br/>
-
- <p>
- This usually happens if you compile the code
- on one machine and run it on another which has incompatible
- libraries.
- Try to recompile the program on that machine or use static linking.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q02:_Installation_and_running_the_program"></a>
- <a name="f207"><b>Q: I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</b></a>
- <br/>
-
- <p>
- Build it as a project by choosing "Win32 Project."
- On the other hand, for "svm-train" and "svm-predict"
- you want to choose "Win32 Console Project."
- After libsvm 2.5, you can also use the file Makefile.win.
- See details in README.
-
-
- <p>
- If you are not using Makefile.win and see the following
- link error
- <pre>
- LIBCMTD.lib(wwincrt0.obj) : error LNK2001: unresolved external symbol
- _wWinMain@16
- </pre>
- you may have selected a wrong project type.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q02:_Installation_and_running_the_program"></a>
- <a name="f208"><b>Q: I am an MS windows user but why only one (svm-toy) of those precompiled .exe actually runs ? </b></a>
- <br/>
-
- <p>
- You need to open a command window
- and type svmtrain.exe to see all options.
- Some examples are in README file.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q02:_Installation_and_running_the_program"></a>
- <a name="f209"><b>Q: What is the difference between "." and "*" outputed during training? </b></a>
- <br/>
-
- <p>
- "." means every 1,000 iterations (or every #data
- iterations is your #data is less than 1,000).
- "*" means that after iterations of using
- a smaller shrunk problem,
- we reset to use the whole set. See the
- <a href=../papers/libsvm.pdf>implementation document</a> for details.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q02:_Installation_and_running_the_program"></a>
- <a name="f210"><b>Q: Why occasionally the program (including MATLAB or other interfaces) crashes and gives a segmentation fault?</b></a>
- <br/>
-
- <p>
- Very likely the program consumes too much memory than what the
- operating system can provide. Try a smaller data and see if the
- program still crashes.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q02:_Installation_and_running_the_program"></a>
- <a name="f211"><b>Q: How to build a dynamic library (.dll file) on MS windows?</b></a>
- <br/>
- <p>
-
- The easiest way is to use Makefile.win.
- See details in README.
-
- Alternatively, you can use Visual C++. Here is
- the example using Visual Studio 2013:
- <ol>
- <li>Create a Win32 empty DLL project and set (in Project->$Project_Name
- Properties...->Configuration) to "Release."
- About how to create a new dynamic link library, please refer to
- <a href=http://msdn2.microsoft.com/en-us/library/ms235636(VS.80).aspx>http://msdn2.microsoft.com/en-us/library/ms235636(VS.80).aspx</a>
-
- <li> Add svm.cpp, svm.h to your project.
- <li> Add __WIN32__ and _CRT_SECURE_NO_DEPRECATE to Preprocessor definitions (in
- Project->$Project_Name Properties...->C/C++->Preprocessor)
- <li> Set Create/Use Precompiled Header to Not Using Precompiled Headers
- (in Project->$Project_Name Properties...->C/C++->Precompiled Headers)
- <li> Set the path for the Modulation Definition File svm.def (in
- Project->$Project_Name Properties...->Linker->input
- <li> Build the DLL.
- <li> Rename the dll file to libsvm.dll and move it to the correct path.
- </ol>
-
-
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q02:_Installation_and_running_the_program"></a>
- <a name="f212"><b>Q: On some systems (e.g., Ubuntu), compiling LIBSVM gives many warning messages. Is this a problem and how to disable the warning message?</b></a>
- <br/>
-
- <p>
- If you are using a version before 3.18, probably you see
- a warning message like
- <pre>
- svm.cpp:2730: warning: ignoring return value of int fscanf(FILE*, const char*, ...), declared with attribute warn_unused_result
- </pre>
- This is not a problem; see <a href=https://wiki.ubuntu.com/CompilerFlags#-D_FORTIFY_SOURCE=2>this page</a> for more
- details of ubuntu systems.
- To disable the warning message you can replace
- <pre>
- CFLAGS = -Wall -Wconversion -O3 -fPIC
- </pre>
- with
- <pre>
- CFLAGS = -Wall -Wconversion -O3 -fPIC -U_FORTIFY_SOURCE
- </pre>
- in Makefile.
- <p> After version 3.18, we have a better setting so that such warning messages do not appear.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q02:_Installation_and_running_the_program"></a>
- <a name="f213"><b>Q: In LIBSVM, why you don't use certain C/C++ library functions to make the code shorter?</b></a>
- <br/>
-
- <p>
- For portability, we use only features defined in ISO C89. Note that features in ISO C99 may not be available everywhere.
- Even the newest gcc lacks some features in C99 (see <a href=http://gcc.gnu.org/c99status.html>http://gcc.gnu.org/c99status.html</a> for details).
- If the situation changes in the future,
- we might consider using these newer features.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q03:_Data_preparation"></a>
- <a name="f301"><b>Q: Why sometimes not all attributes of a data appear in the training/model files ?</b></a>
- <br/>
- <p>
- libsvm uses the so called "sparse" format where zero
- values do not need to be stored. Hence a data with attributes
- <pre>
- 1 0 2 0
- </pre>
- is represented as
- <pre>
- 1:1 3:2
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q03:_Data_preparation"></a>
- <a name="f302"><b>Q: What if my data are non-numerical ?</b></a>
- <br/>
- <p>
- Currently libsvm supports only numerical data.
- You may have to change non-numerical data to
- numerical. For example, you can use several
- binary attributes to represent a categorical
- attribute.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q03:_Data_preparation"></a>
- <a name="f303"><b>Q: Why do you consider sparse format ? Will the training of dense data be much slower ?</b></a>
- <br/>
- <p>
- This is a controversial issue. The kernel
- evaluation (i.e. inner product) of sparse vectors is slower
- so the total training time can be at least twice or three times
- of that using the dense format.
- However, we cannot support only dense format as then we CANNOT
- handle extremely sparse cases. Simplicity of the code is another
- concern. Right now we decide to support
- the sparse format only.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q03:_Data_preparation"></a>
- <a name="f304"><b>Q: Why sometimes the last line of my data is not read by svm-train?</b></a>
- <br/>
-
- <p>
- We assume that you have '\n' in the end of
- each line. So please press enter in the end
- of your last line.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q03:_Data_preparation"></a>
- <a name="f305"><b>Q: Is there a program to check if my data are in the correct format?</b></a>
- <br/>
-
- <p>
- The svm-train program in libsvm conducts only a simple check of the input data. To do a
- detailed check, after libsvm 2.85, you can use the python script tools/checkdata.py. See tools/README for details.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q03:_Data_preparation"></a>
- <a name="f306"><b>Q: May I put comments in data files?</b></a>
- <br/>
-
- <p>
- We don't officially support this. But, currently LIBSVM
- is able to process data in the following
- format:
- <pre>
- 1 1:2 2:1 # your comments
- </pre>
- Note that the character ":" should not appear in your
- comments.
- <!--
- No, for simplicity we don't support that.
- However, you can easily preprocess your data before
- using libsvm. For example,
- if you have the following data
- <pre>
- test.txt
- 1 1:2 2:1 # proten A
- </pre>
- then on unix machines you can do
- <pre>
- cut -d '#' -f 1 < test.txt > test.features
- cut -d '#' -f 2 < test.txt > test.comments
- svm-predict test.feature train.model test.predicts
- paste -d '#' test.predicts test.comments | sed 's/#/ #/' > test.results
- </pre>
- -->
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q03:_Data_preparation"></a>
- <a name="f307"><b>Q: How to convert other data formats to LIBSVM format?</b></a>
- <br/>
-
- <p>
- It depends on your data format. A simple way is to use
- libsvmwrite in the libsvm matlab/octave interface.
-
- Take a CSV (comma-separated values) file
- in UCI machine learning repository as an example.
- We download <a href=http://archive.ics.uci.edu/ml/machine-learning-databases/spect/SPECTF.train>SPECTF.train</a>.
- Labels are in the first column. The following steps produce
- a file in the libsvm format.
- <pre>
- matlab> SPECTF = csvread('SPECTF.train'); % read a csv file
- matlab> labels = SPECTF(:, 1); % labels from the 1st column
- matlab> features = SPECTF(:, 2:end);
- matlab> features_sparse = sparse(features); % features must be in a sparse matrix
- matlab> libsvmwrite('SPECTFlibsvm.train', labels, features_sparse);
- </pre>
- The tranformed data are stored in SPECTFlibsvm.train.
-
- <p>
- Alternatively, you can use <a href="./faqfiles/convert.c">convert.c</a>
- to convert CSV format to libsvm format.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f401"><b>Q: The output of training C-SVM is like the following. What do they mean?</b></a>
- <br/>
- <br>optimization finished, #iter = 219
- <br>nu = 0.431030
- <br>obj = -100.877286, rho = 0.424632
- <br>nSV = 132, nBSV = 107
- <br>Total nSV = 132
- <p>
- obj is the optimal objective value of the dual SVM problem.
- rho is the bias term in the decision function
- sgn(w^Tx - rho).
- nSV and nBSV are number of support vectors and bounded support
- vectors (i.e., alpha_i = C). nu-svm is a somewhat equivalent
- form of C-SVM where C is replaced by nu. nu simply shows the
- corresponding parameter. More details are in
- <a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">
- libsvm document</a>.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f402"><b>Q: Can you explain more about the model file?</b></a>
- <br/>
-
- <p>
- In the model file, after parameters and other informations such as labels , each line represents a support vector.
- Support vectors are listed in the order of "labels" shown earlier.
- (i.e., those from the first class in the "labels" list are
- grouped first, and so on.)
- If k is the total number of classes,
- in front of a support vector in class j, there are
- k-1 coefficients
- y*alpha where alpha are dual solution of the
- following two class problems:
- <br>
- 1 vs j, 2 vs j, ..., j-1 vs j, j vs j+1, j vs j+2, ..., j vs k
- <br>
- and y=1 in first j-1 coefficients, y=-1 in the remaining
- k-j coefficients.
-
- For example, if there are 4 classes, the file looks like:
-
- <pre>
- +-+-+-+--------------------+
- |1|1|1| |
- |v|v|v| SVs from class 1 |
- |2|3|4| |
- +-+-+-+--------------------+
- |1|2|2| |
- |v|v|v| SVs from class 2 |
- |2|3|4| |
- +-+-+-+--------------------+
- |1|2|3| |
- |v|v|v| SVs from class 3 |
- |3|3|4| |
- +-+-+-+--------------------+
- |1|2|3| |
- |v|v|v| SVs from class 4 |
- |4|4|4| |
- +-+-+-+--------------------+
- </pre>
- See also
- <a href="#f804"> an illustration using
- MATLAB/OCTAVE.</a>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f403"><b>Q: Should I use float or double to store numbers in the cache ?</b></a>
- <br/>
-
- <p>
- We have float as the default as you can store more numbers
- in the cache.
- In general this is good enough but for few difficult
- cases (e.g. C very very large) where solutions are huge
- numbers, it might be possible that the numerical precision is not
- enough using only float.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f405"><b>Q: Does libsvm have special treatments for linear SVM?</b></a>
- <br/>
-
- <p>
-
- No, libsvm solves linear/nonlinear SVMs by the
- same way.
- Some tricks may save training/testing time if the
- linear kernel is used,
- so libsvm is <b>NOT</b> particularly efficient for linear SVM,
- especially when
- C is large and
- the number of data is much larger
- than the number of attributes.
- You can either
- <ul>
- <li>
- Use small C only. We have shown in the following paper
- that after C is larger than a certain threshold,
- the decision function is the same.
- <p>
- <a href="http://guppy.mpe.nus.edu.sg/~mpessk/">S. S. Keerthi</a>
- and
- <B>C.-J. Lin</B>.
- <A HREF="papers/limit.pdf">
- Asymptotic behaviors of support vector machines with
- Gaussian kernel
- </A>
- .
- <I><A HREF="http://mitpress.mit.edu/journal-home.tcl?issn=08997667">Neural Computation</A></I>, 15(2003), 1667-1689.
-
-
- <li>
- Check <a href=http://www.csie.ntu.edu.tw/~cjlin/liblinear>liblinear</a>,
- which is designed for large-scale linear classification.
- </ul>
-
- <p> Please also see our <a href=../papers/guide/guide.pdf>SVM guide</a>
- on the discussion of using RBF and linear
- kernels.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f406"><b>Q: The number of free support vectors is large. What should I do?</b></a>
- <br/>
- <p>
- This usually happens when the data are overfitted.
- If attributes of your data are in large ranges,
- try to scale them. Then the region
- of appropriate parameters may be larger.
- Note that there is a scale program
- in libsvm.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f407"><b>Q: Should I scale training and testing data in a similar way?</b></a>
- <br/>
- <p>
- Yes, you can do the following:
- <pre>
- > svm-scale -s scaling_parameters train_data > scaled_train_data
- > svm-scale -r scaling_parameters test_data > scaled_test_data
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f4071"><b>Q: On windows sometimes svm-scale.exe generates some non-ASCII data not good for training/prediction?</b></a>
- <br/>
- <p>
- In general this does not happen, but we have observed in some rare
- situations, the output of svm-scale.exe directed to a file (by ">")
- has wrong encoding. That is, the file is not an ASCII file, so cannot be
- used for training/prediction. Please let us know if this happens as at this moment
- we don't clearly see how to fix the problem.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f408"><b>Q: Does it make a big difference if I scale each attribute to [0,1] instead of [-1,1]?</b></a>
- <br/>
-
- <p>
- For the linear scaling method, if the RBF kernel is
- used and parameter selection is conducted, there
- is no difference. Assume Mi and mi are
- respectively the maximal and minimal values of the
- ith attribute. Scaling to [0,1] means
- <pre>
- x'=(x-mi)/(Mi-mi)
- </pre>
- For [-1,1],
- <pre>
- x''=2(x-mi)/(Mi-mi)-1.
- </pre>
- In the RBF kernel,
- <pre>
- x'-y'=(x-y)/(Mi-mi), x''-y''=2(x-y)/(Mi-mi).
- </pre>
- Hence, using (C,g) on the [0,1]-scaled data is the
- same as (C,g/2) on the [-1,1]-scaled data.
-
- <p> Though the performance is the same, the computational
- time may be different. For data with many zero entries,
- [0,1]-scaling keeps the sparsity of input data and hence
- may save the time.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f409"><b>Q: The prediction rate is low. How could I improve it?</b></a>
- <br/>
- <p>
- Try to use the model selection tool grid.py in the tools
- directory find
- out good parameters. To see the importance of model selection,
- please
- see our guide for beginners:
- <A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
- A practical guide to support vector
- classification
- </A>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f410"><b>Q: My data are unbalanced. Could libsvm handle such problems?</b></a>
- <br/>
- <p>
- Yes, there is a -wi options. For example, if you use
- <pre>
- > svm-train -s 0 -c 10 -w1 1 -w-1 5 data_file
- </pre>
- <p>
- the penalty for class "-1" is larger.
- Note that this -w option is for C-SVC only.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f411"><b>Q: What is the difference between nu-SVC and C-SVC?</b></a>
- <br/>
- <p>
- Basically they are the same thing but with different
- parameters. The range of C is from zero to infinity
- but nu is always between [0,1]. A nice property
- of nu is that it is related to the ratio of
- support vectors and the ratio of the training
- error.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f412"><b>Q: The program keeps running (without showing any output). What should I do?</b></a>
- <br/>
- <p>
- You may want to check your data. Each training/testing
- data must be in one line. It cannot be separated.
- In addition, you have to remove empty lines.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f413"><b>Q: The program keeps running (with output, i.e. many dots). What should I do?</b></a>
- <br/>
- <p>
- In theory libsvm guarantees to converge.
- Therefore, this means you are
- handling ill-conditioned situations
- (e.g. too large/small parameters) so numerical
- difficulties occur.
- <p>
- You may get better numerical stability by replacing
- <pre>
- typedef float Qfloat;
- </pre>
- in svm.cpp with
- <pre>
- typedef double Qfloat;
- </pre>
- That is, elements in the kernel cache are stored
- in double instead of single. However, this means fewer elements
- can be put in the kernel cache.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f414"><b>Q: The training time is too long. What should I do?</b></a>
- <br/>
- <p>
- For large problems, please specify enough cache size (i.e.,
- -m).
- Slow convergence may happen for some difficult cases (e.g. -c is large).
- You can try to use a looser stopping tolerance with -e.
- If that still doesn't work, you may train only a subset of the data.
- You can use the program subset.py in the directory "tools"
- to obtain a random subset.
-
- <p>
- If you have extremely large data and face this difficulty, please
- contact us. We will be happy to discuss possible solutions.
-
- <p> When using large -e, you may want to check if -h 0 (no shrinking) or -h 1 (shrinking) is faster.
- See a related question below.
-
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f4141"><b>Q: Does shrinking always help?</b></a>
- <br/>
- <p>
- If the number of iterations is high, then shrinking
- often helps.
- However, if the number of iterations is small
- (e.g., you specify a large -e), then
- probably using -h 0 (no shrinking) is better.
- See the
- <a href=../papers/libsvm.pdf>implementation document</a> for details.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f415"><b>Q: How do I get the decision value(s)?</b></a>
- <br/>
- <p>
- We print out decision values for regression. For classification,
- we solve several binary SVMs for multi-class cases. You
- can obtain values by easily calling the subroutine
- svm_predict_values. Their corresponding labels
- can be obtained from svm_get_labels.
- Details are in
- README of libsvm package.
-
- <p>
- If you are using MATLAB/OCTAVE interface, svmpredict can directly
- give you decision values. Please see matlab/README for details.
-
- <p>
- We do not recommend the following. But if you would
- like to get values for
- TWO-class classification with labels +1 and -1
- (note: +1 and -1 but not things like 5 and 10)
- in the easiest way, simply add
- <pre>
- printf("%f\n", dec_values[0]*model->label[0]);
- </pre>
- after the line
- <pre>
- svm_predict_values(model, x, dec_values);
- </pre>
- of the file svm.cpp.
- Positive (negative)
- decision values correspond to data predicted as +1 (-1).
-
-
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f4151"><b>Q: How do I get the distance between a point and the hyperplane?</b></a>
- <br/>
- <p>
- The distance is |decision_value| / |w|.
- We have |w|^2 = w^Tw = alpha^T Q alpha = 2*(dual_obj + sum alpha_i).
- Thus in svm.cpp please find the place
- where we calculate the dual objective value
- (i.e., the subroutine Solve())
- and add a statement to print w^Tw.
-
- More precisely, here is what you need to do
- <ol>
- <li>Search for "calculate objective value" in svm.cpp
- </li>
- <li> In that place, si->obj is the variable for the objective value
- </li>
- <li> Add a for loop to calculate the sum of alpha
- </li>
- <li> Calculate 2*(si->obj + sum of alpha) and print the square root of it. You now get |w|. You
- need to recompile the code
- </li>
- <li> Check an earlier FAQ on printing decision values. You
- need to recompile the code
- </li>
- <li>
- Then print decision value divided by the |w| value obtained earlier.
- </li>
- </ol>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f416"><b>Q: On 32-bit machines, if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</b></a>
- <br/>
- <p>
-
- On 32-bit machines, the maximum addressable
- memory is 4GB. The Linux kernel uses 3:1
- split which means user space is 3G and
- kernel space is 1G. Although there are
- 3G user space, the maximum dynamic allocation
- memory is 2G. So, if you specify -m near 2G,
- the memory will be exhausted. And svm-train
- will fail when it asks more memory.
- For more details, please read
- <a href=http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&selm=3BA164F6.BAFA4FB%40daimi.au.dk>
- this article</a>.
- <p>
- The easiest solution is to switch to a
- 64-bit machine.
- Otherwise, there are two ways to solve this. If your
- machine supports Intel's PAE (Physical Address
- Extension), you can turn on the option HIGHMEM64G
- in Linux kernel which uses 4G:4G split for
- kernel and user space. If you don't, you can
- try a software `tub' which can eliminate the 2G
- boundary for dynamic allocated memory. The `tub'
- is available at
- <a href=http://www.bitwagon.com/tub.html>http://www.bitwagon.com/tub.html</a>.
-
-
- <!--
-
- This may happen only when the cache is large, but each cached row is
- not large enough. <b>Note:</b> This problem is specific to
- gnu C library which is used in linux.
- The solution is as follows:
-
- <p>
- In our program we have malloc() which uses two methods
- to allocate memory from kernel. One is
- sbrk() and another is mmap(). sbrk is faster, but mmap
- has a larger address
- space. So malloc uses mmap only if the wanted memory size is larger
- than some threshold (default 128k).
- In the case where each row is not large enough (#elements < 128k/sizeof(float)) but we need a large cache ,
- the address space for sbrk can be exhausted. The solution is to
- lower the threshold to force malloc to use mmap
- and increase the maximum number of chunks to allocate
- with mmap.
-
- <p>
- Therefore, in the main program (i.e. svm-train.c) you want
- to have
- <pre>
- #include <malloc.h>
- </pre>
- and then in main():
- <pre>
- mallopt(M_MMAP_THRESHOLD, 32768);
- mallopt(M_MMAP_MAX,1000000);
- </pre>
- You can also set the environment variables instead
- of writing them in the program:
- <pre>
- $ M_MMAP_MAX=1000000 M_MMAP_THRESHOLD=32768 ./svm-train .....
- </pre>
- More information can be found by
- <pre>
- $ info libc "Malloc Tunable Parameters"
- </pre>
- -->
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f417"><b>Q: How do I disable screen output of svm-train?</b></a>
- <br/>
- <p>
- For commend-line users, use the -q option:
- <pre>
- > ./svm-train -q heart_scale
- </pre>
- <p>
- For library users, set the global variable
- <pre>
- extern void (*svm_print_string) (const char *);
- </pre>
- to specify the output format. You can disable the output by the following steps:
- <ol>
- <li>
- Declare a function to output nothing:
- <pre>
- void print_null(const char *s) {}
- </pre>
- </li>
- <li>
- Assign the output function of libsvm by
- <pre>
- svm_print_string = &print_null;
- </pre>
- </li>
- </ol>
- Finally, a way used in earlier libsvm
- is by updating svm.cpp from
- <pre>
- #if 1
- void info(const char *fmt,...)
- </pre>
- to
- <pre>
- #if 0
- void info(const char *fmt,...)
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f418"><b>Q: I would like to use my own kernel. Any example? In svm.cpp, there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</b></a>
- <br/>
- <p>
- An example is "LIBSVM for string data" in LIBSVM Tools.
- <p>
- The reason why we have two functions is as follows.
- For the RBF kernel exp(-g |xi - xj|^2), if we calculate
- xi - xj first and then the norm square, there are 3n operations.
- Thus we consider exp(-g (|xi|^2 - 2dot(xi,xj) +|xj|^2))
- and by calculating all |xi|^2 in the beginning,
- the number of operations is reduced to 2n.
- This is for the training. For prediction we cannot
- do this so a regular subroutine using that 3n operations is
- needed.
-
- The easiest way to have your own kernel is
- to put the same code in these two
- subroutines by replacing any kernel.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f419"><b>Q: What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method?</b></a>
- <br/>
- <p>
- It is one-against-one. We chose it after doing the following
- comparison:
- C.-W. Hsu and C.-J. Lin.
- <A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/multisvm.pdf">
- A comparison of methods
- for multi-class support vector machines
- </A>,
- <I>IEEE Transactions on Neural Networks</A></I>, 13(2002), 415-425.
-
- <p>
- "1-against-the rest" is a good method whose performance
- is comparable to "1-against-1." We do the latter
- simply because its training time is shorter.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f422"><b>Q: I would like to solve L2-loss SVM (i.e., error term is quadratic). How should I modify the code ?</b></a>
- <br/>
- <p>
- It is extremely easy. Taking c-svc for example, to solve
- <p>
- min_w w^Tw/2 + C \sum max(0, 1- (y_i w^Tx_i+b))^2,
- <p>
- only two
- places of svm.cpp have to be changed.
- First, modify the following line of
- solve_c_svc from
- <pre>
- s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
- alpha, Cp, Cn, param->eps, si, param->shrinking);
- </pre>
- to
- <pre>
- s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
- alpha, INF, INF, param->eps, si, param->shrinking);
- </pre>
- Second, in the class of SVC_Q, declare C as
- a private variable:
- <pre>
- double C;
- </pre>
- In the constructor replace
- <pre>
- for(int i=0;i<prob.l;i++)
- QD[i]= (Qfloat)(this->*kernel_function)(i,i);
- </pre>
- with
- <pre>
- this->C = param.C;
- for(int i=0;i<prob.l;i++)
- QD[i]= (Qfloat)(this->*kernel_function)(i,i)+0.5/C;
- </pre>
- Then in the subroutine get_Q, after the for loop, add
- <pre>
- if(i >= start && i < len)
- data[i] += 0.5/C;
- </pre>
-
- <p>
- For one-class svm, the modification is exactly the same. For SVR, you don't need an if statement like the above. Instead, you only need a simple assignment:
- <pre>
- data[real_i] += 0.5/C;
- </pre>
-
-
- <p>
- For large linear L2-loss SVM, please use
- <a href=../liblinear>LIBLINEAR</a>.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f425"><b>Q: In one-class SVM, parameter nu should be an upper bound of the training error rate. Why sometimes I get a training error rate bigger than nu?</b></a>
- <br/>
-
- <p>
- At optimum, some training instances should satisfy
- w^Tx - rho = 0. However, numerically they may be slightly
- smaller than zero
- Then they are wrongly counted
- as training errors. You can use a smaller stopping tolerance
- (by the -e option) to make this problem less serious.
-
- <p>
- This issue <b>does not occur</b> for nu-SVC for
- two-class classification.
- We have that
- <ol>
- <li>nu is an upper bound on the ratio of training points
- on the wrong side of the hyperplane, and
- <li>therefore, nu is also an upper bound on the training error rate.
- </ol>
- Numerical issues occur in calculating the first case
- because some training points satisfying y(w^Tx + b) - rho = 0
- become negative.
- However, we have no numerical problems for the second case because
- we compare y(w^Tx + b) and 0 for counting training errors.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f427"><b>Q: Why the code gives NaN (not a number) results?</b></a>
- <br/>
- <p>
- This rarely happens, but few users reported the problem.
- It seems that their
- computers for training libsvm have the VPN client
- running. The VPN software has some bugs and causes this
- problem. Please try to close or disconnect the VPN client.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f430"><b>Q: Why the sign of predicted labels and decision values are sometimes reversed?</b></a>
- <br/>
- <p>
-
- This situation may occur <b>before version 3.17</b>.
- Nothing is wrong. Very likely you have two labels +1/-1 and the first instance in your data
- has -1. We give the following explanation.
-
- <p>
- Internally class labels are ordered by their first occurrence in the training set. For a k-class data, internally labels
- are 0, ..., k-1, and each two-class SVM considers pair
- (i, j) with i < j. Then class i is treated as positive (+1)
- and j as negative (-1).
- For example, if the data set has labels +5/+10 and +10 appears
- first, then internally the +5 versus +10 SVM problem
- has +10 as positive (+1) and +5 as negative (-1).
-
- <p>
- By this setting, if you have labels +1 and -1,
- it's possible that internally they correspond to -1 and +1,
- respectively. Some new users have been confused about
- this, so <b>after version 3.17</b>, if the data set has only
- two labels +1 and -1,
- internally we ensure +1 to be before -1. Then class +1
- is always treated as positive in the SVM problem.
- Note that this is for <b>two-class data only.</b>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f431"><b>Q: I don't know class labels of test data. What should I put in the first column of the test file?</b></a>
- <br/>
- <p>Any value is ok. In this situation, what you will use is the output file of svm-predict, which gives predicted class labels.
-
-
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f432"><b>Q: How can I use OpenMP to parallelize LIBSVM on a multicore/shared-memory computer?</b></a>
- <br/>
-
- <p>It is very easy if you are using GCC 4.2
- or after.
-
- <p> In Makefile, add -fopenmp to CFLAGS.
-
- <p> In class SVC_Q of svm.cpp, modify the for loop
- of get_Q to:
- <pre>
- #pragma omp parallel for private(j) schedule(guided)
- for(j=start;j<len;j++)
- </pre>
- <p> In the subroutine svm_predict_values of svm.cpp, add one line to the for loop:
- <pre>
- #pragma omp parallel for private(i) schedule(guided)
- for(i=0;i<l;i++)
- kvalue[i] = Kernel::k_function(x,model->SV[i],model->param);
- </pre>
- For regression, you need to modify
- class SVR_Q instead. The loop in svm_predict_values
- is also different because you need
- a reduction clause for the variable sum:
- <pre>
- #pragma omp parallel for private(i) reduction(+:sum) schedule(guided)
- for(i=0;i<model->l;i++)
- sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param);
- </pre>
-
- <p> Then rebuild the package. Kernel evaluations in training/testing will be parallelized. An example of running this modification on
- an 8-core machine using the data set
- <a href=../libsvmtools/datasets/binary/real-sim.bz2>real-sim</a>:
-
- <p> 8 cores:
- <pre>
- %setenv OMP_NUM_THREADS 8
- %time svm-train -c 8 -g 0.5 -m 1000 real-sim
- 175.90sec
- </pre>
- 1 core:
- <pre>
- %setenv OMP_NUM_THREADS 1
- %time svm-train -c 8 -g 0.5 -m 1000 real-sim
- 588.89sec
- </pre>
- For this data, kernel evaluations take 91% of training time. In the above example, we assume you use csh. For bash, use
- <pre>
- export OMP_NUM_THREADS=8
- </pre>
- instead.
-
- <p> For Python interface, you need to add the -lgomp link option:
- <pre>
- $(CXX) -lgomp -shared -dynamiclib svm.o -o libsvm.so.$(SHVER)
- </pre>
-
- <p> For MS Windows, you need to add /openmp in CFLAGS of Makefile.win
-
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f433"><b>Q: How could I know which training instances are support vectors?</b></a>
- <br/>
-
- <p>
- It's very simple. Since version 3.13, you can use the function
- <pre>
- void svm_get_sv_indices(const struct svm_model *model, int *sv_indices)
- </pre>
- to get indices of support vectors. For example, in svm-train.c, after
- <pre>
- model = svm_train(&prob, &param);
- </pre>
- you can add
- <pre>
- int nr_sv = svm_get_nr_sv(model);
- int *sv_indices = Malloc(int, nr_sv);
- svm_get_sv_indices(model, sv_indices);
- for (int i=0; i<nr_sv; i++)
- printf("instance %d is a support vector\n", sv_indices[i]);
- </pre>
-
- <p> If you use matlab interface, you can directly check
- <pre>
- model.sv_indices
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q04:_Training_and_prediction"></a>
- <a name="f434"><b>Q: Why sv_indices (indices of support vectors) are not stored in the saved model file?</b></a>
- <br/>
-
- <p>
- Although sv_indices is a member of the model structure
- to
- indicate support vectors in the training set,
- we do not store its contents in the model file.
- The model file is mainly used in the future for
- prediction, so it is basically <b>independent</b>
- from training data. Thus
- storing sv_indices is not necessary.
- Users should find support vectors right after
- the training process. See the previous FAQ.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q05:_Cross_validation_and_parameter_selection"></a>
- <a name="f501"><b>Q: After doing cross validation, why there is no model file outputted ?</b></a>
- <br/>
- <p>
- Cross validation is used for selecting good parameters.
- After finding them, you want to re-train the whole
- data without the -v option.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q05:_Cross_validation_and_parameter_selection"></a>
- <a name="f502"><b>Q: Why my cross-validation results are different from those in the Practical Guide?</b></a>
- <br/>
- <p>
-
- Due to random partitions of
- the data, on different systems CV accuracy values
- may be different.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q05:_Cross_validation_and_parameter_selection"></a>
- <a name="f503"><b>Q: On some systems CV accuracy is the same in several runs. How could I use different data partitions? In other words, how do I set random seed in LIBSVM?</b></a>
- <br/>
- <p>
- If you use GNU C library,
- the default seed 1 is considered. Thus you always
- get the same result of running svm-train -v.
- To have different seeds, you can add the following code
- in svm-train.c:
- <pre>
- #include <time.h>
- </pre>
- and in the beginning of main(),
- <pre>
- srand(time(0));
- </pre>
- Alternatively, if you are not using GNU C library
- and would like to use a fixed seed, you can have
- <pre>
- srand(1);
- </pre>
-
- <p>
- For Java, the random number generator
- is initialized using the time information.
- So results of two CV runs are different.
- To fix the seed, after version 3.1 (released
- in mid 2011), you can add
- <pre>
- svm.rand.setSeed(0);
- </pre>
- in the main() function of svm_train.java.
-
- <p>
- If you use CV to select parameters, it is recommended to use identical folds
- under different parameters. In this case, you can consider fixing the seed.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q05:_Cross_validation_and_parameter_selection"></a>
- <a name="f504"><b>Q: Why on windows sometimes grid.py fails?</b></a>
- <br/>
- <p>
-
- This problem shouldn't happen after version
- 2.85. If you are using earlier versions,
- please download the latest one.
-
- <!--
- <p>
- If you are using earlier
- versions, the error message is probably
- <pre>
- Traceback (most recent call last):
- File "grid.py", line 349, in ?
- main()
- File "grid.py", line 344, in main
- redraw(db)
- File "grid.py", line 132, in redraw
- gnuplot.write("set term windows\n")
- IOError: [Errno 22] Invalid argument
- </pre>
-
- <p>Please try to close gnuplot windows and rerun.
- If the problem still occurs, comment the following
- two lines in grid.py by inserting "#" in the beginning:
- <pre>
- redraw(db)
- redraw(db,1)
- </pre>
- Then you get accuracy only but not cross validation contours.
- -->
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q05:_Cross_validation_and_parameter_selection"></a>
- <a name="f505"><b>Q: Why grid.py/easy.py sometimes generates the following warning message?</b></a>
- <br/>
- <pre>
- Warning: empty z range [62.5:62.5], adjusting to [61.875:63.125]
- Notice: cannot contour non grid data!
- </pre>
- <p>Nothing is wrong and please disregard the
- message. It is from gnuplot when drawing
- the contour.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q05:_Cross_validation_and_parameter_selection"></a>
- <a name="f506"><b>Q: How do I choose the kernel?</b></a>
- <br/>
-
- <p>
- In general we suggest you to try the RBF kernel first.
- A recent result by Keerthi and Lin
- (<a href=http://www.csie.ntu.edu.tw/~cjlin/papers/limit.pdf>
- download paper here</a>)
- shows that if RBF is used with model selection,
- then there is no need to consider the linear kernel.
- The kernel matrix using sigmoid may not be positive definite
- and in general it's accuracy is not better than RBF.
- (see the paper by Lin and Lin
- (<a href=http://www.csie.ntu.edu.tw/~cjlin/papers/tanh.pdf>
- download paper here</a>).
- Polynomial kernels are ok but if a high degree is used,
- numerical difficulties tend to happen
- (thinking about dth power of (<1) goes to 0
- and (>1) goes to infinity).
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q05:_Cross_validation_and_parameter_selection"></a>
- <a name="f507"><b>Q: How does LIBSVM perform parameter selection for multi-class problems? </b></a>
- <br/>
-
- <p>
- LIBSVM implements "one-against-one" multi-class method, so there are
- k(k-1)/2 binary models, where k is the number of classes.
-
- <p>
- We can consider two ways to conduct parameter selection.
-
- <ol>
- <li>
- For any two classes of data, a parameter selection procedure is conducted. Finally,
- each decision function has its own optimal parameters.
- </li>
- <li>
- The same parameters are used for all k(k-1)/2 binary classification problems.
- We select parameters that achieve the highest overall performance.
- </li>
- </ol>
-
- Each has its own advantages. A
- single parameter set may not be uniformly good for all k(k-1)/2 decision functions.
- However, as the overall accuracy is the final consideration, one parameter set
- for one decision function may lead to over-fitting. In the paper
- <p>
- Chen, Lin, and Schölkopf,
- <A HREF="../papers/nusvmtutorial.pdf">
- A tutorial on nu-support vector machines.
- </A>
- Applied Stochastic Models in Business and Industry, 21(2005), 111-136,
-
- <p>
- they have experimentally
- shown that the two methods give similar performance.
- Therefore, currently the parameter selection in LIBSVM
- takes the second approach by considering the same parameters for
- all k(k-1)/2 models.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q05:_Cross_validation_and_parameter_selection"></a>
- <a name="f508"><b>Q: How do I choose parameters for one-class SVM as training data are in only one class?</b></a>
- <br/>
- <p>
- You have pre-specified true positive rate in mind and then search for
- parameters which achieve similar cross-validation accuracy.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q05:_Cross_validation_and_parameter_selection"></a>
- <a name="f509"><b>Q: Instead of grid.py, what if I would like to conduct parameter selection using other programmin languages?</b></a>
- <br/>
- <p>
- For MATLAB, please see another question in FAQ.
-
- <p>
- For using shell scripts, please check the <a href=https://github.com/ljos/svm-grid>code</a> written by Bjarte Johansen
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q06:_Probability_outputs"></a>
- <a name="f425"><b>Q: Why training a probability model (i.e., -b 1) takes a longer time?</b></a>
- <br/>
- <p>
- To construct this probability model, we internally conduct a
- cross validation, which is more time consuming than
- a regular training.
- Hence, in general you do parameter selection first without
- -b 1. You only use -b 1 when good parameters have been
- selected. In other words, you avoid using -b 1 and -v
- together.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q06:_Probability_outputs"></a>
- <a name="f426"><b>Q: Why using the -b option does not give me better accuracy?</b></a>
- <br/>
- <p>
- There is absolutely no reason the probability outputs guarantee
- you better accuracy. The main purpose of this option is
- to provide you the probability estimates, but not to boost
- prediction accuracy. From our experience,
- after proper parameter selections, in general with
- and without -b have similar accuracy. Occasionally there
- are some differences.
- It is not recommended to compare the two under
- just a fixed parameter
- set as more differences will be observed.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q06:_Probability_outputs"></a>
- <a name="f427"><b>Q: Why using svm-predict -b 0 and -b 1 gives different accuracy values?</b></a>
- <br/>
- <p>
- Let's just consider two-class classification here. After probability information is obtained in training,
- we do not have
- <p>
- prob > = 0.5 if and only if decision value >= 0.
- <p>
- So predictions may be different with -b 0 and 1.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q07:_Graphic_interface"></a>
- <a name="f501"><b>Q: How can I save images drawn by svm-toy?</b></a>
- <br/>
- <p>
- For Microsoft windows, first press the "print screen" key on the keyboard.
- Open "Microsoft Paint"
- (included in Windows)
- and press "ctrl-v." Then you can clip
- the part of picture which you want.
- For X windows, you can
- use the program "xv" or "import" to grab the picture of the svm-toy window.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q07:_Graphic_interface"></a>
- <a name="f502"><b>Q: I press the "load" button to load data points but why svm-toy does not draw them ?</b></a>
- <br/>
- <p>
- The program svm-toy assumes both attributes (i.e. x-axis and y-axis
- values) are in (0,1). Hence you want to scale your
- data to between a small positive number and
- a number less than but very close to 1.
- Moreover, class labels must be 1, 2, or 3
- (not 1.0, 2.0 or anything else).
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q07:_Graphic_interface"></a>
- <a name="f503"><b>Q: I would like svm-toy to handle more than three classes of data, what should I do ?</b></a>
- <br/>
- <p>
- Taking windows/svm-toy.cpp as an example, you need to
- modify it and the difference
- from the original file is as the following: (for five classes of
- data)
- <pre>
- 30,32c30
- < RGB(200,0,200),
- < RGB(0,160,0),
- < RGB(160,0,0)
- ---
- > RGB(200,0,200)
- 39c37
- < HBRUSH brush1, brush2, brush3, brush4, brush5;
- ---
- > HBRUSH brush1, brush2, brush3;
- 113,114d110
- < brush4 = CreateSolidBrush(colors[7]);
- < brush5 = CreateSolidBrush(colors[8]);
- 155,157c151
- < else if(v==3) return brush3;
- < else if(v==4) return brush4;
- < else return brush5;
- ---
- > else return brush3;
- 325d318
- < int colornum = 5;
- 327c320
- < svm_node *x_space = new svm_node[colornum * prob.l];
- ---
- > svm_node *x_space = new svm_node[3 * prob.l];
- 333,338c326,331
- < x_space[colornum * i].index = 1;
- < x_space[colornum * i].value = q->x;
- < x_space[colornum * i + 1].index = 2;
- < x_space[colornum * i + 1].value = q->y;
- < x_space[colornum * i + 2].index = -1;
- < prob.x[i] = &x_space[colornum * i];
- ---
- > x_space[3 * i].index = 1;
- > x_space[3 * i].value = q->x;
- > x_space[3 * i + 1].index = 2;
- > x_space[3 * i + 1].value = q->y;
- > x_space[3 * i + 2].index = -1;
- > prob.x[i] = &x_space[3 * i];
- 397c390
- < if(current_value > 5) current_value = 1;
- ---
- > if(current_value > 3) current_value = 1;
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q08:_Java_version_of_libsvm"></a>
- <a name="f601"><b>Q: What is the difference between Java version and C++ version of libsvm?</b></a>
- <br/>
- <p>
- They are the same thing. We just rewrote the C++ code
- in Java.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q08:_Java_version_of_libsvm"></a>
- <a name="f602"><b>Q: Is the Java version significantly slower than the C++ version?</b></a>
- <br/>
- <p>
- This depends on the VM you used. We have seen good
- VM which leads the Java version to be quite competitive with
- the C++ code. (though still slower)
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q08:_Java_version_of_libsvm"></a>
- <a name="f603"><b>Q: While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</b></a>
- <br/>
- <p>
- You should try to increase the maximum Java heap size.
- For example,
- <pre>
- java -Xmx2048m -classpath libsvm.jar svm_train ...
- </pre>
- sets the maximum heap size to 2048M.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q08:_Java_version_of_libsvm"></a>
- <a name="f604"><b>Q: Why you have the main source file svm.m4 and then transform it to svm.java?</b></a>
- <br/>
- <p>
- Unlike C, Java does not have a preprocessor built-in.
- However, we need some macros (see first 3 lines of svm.m4).
-
- </ul>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q09:_Python_interface"></a>
- <a name="f704"><b>Q: Except the python-C++ interface provided, could I use Jython to call libsvm ?</b></a>
- <br/>
- <p> Yes, here are some examples:
-
- <pre>
- $ export CLASSPATH=$CLASSPATH:~/libsvm-2.91/java/libsvm.jar
- $ ./jython
- Jython 2.1a3 on java1.3.0 (JIT: jitc)
- Type "copyright", "credits" or "license" for more information.
- >>> from libsvm import *
- >>> dir()
- ['__doc__', '__name__', 'svm', 'svm_model', 'svm_node', 'svm_parameter',
- 'svm_problem']
- >>> x1 = [svm_node(index=1,value=1)]
- >>> x2 = [svm_node(index=1,value=-1)]
- >>> param = svm_parameter(svm_type=0,kernel_type=2,gamma=1,cache_size=40,eps=0.001,C=1,nr_weight=0,shrinking=1)
- >>> prob = svm_problem(l=2,y=[1,-1],x=[x1,x2])
- >>> model = svm.svm_train(prob,param)
- *
- optimization finished, #iter = 1
- nu = 1.0
- obj = -1.018315639346838, rho = 0.0
- nSV = 2, nBSV = 2
- Total nSV = 2
- >>> svm.svm_predict(model,x1)
- 1.0
- >>> svm.svm_predict(model,x2)
- -1.0
- >>> svm.svm_save_model("test.model",model)
-
- </pre>
-
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
- <a name="f801"><b>Q: I compile the MATLAB interface without problem, but why errors occur while running it?</b></a>
- <br/>
- <p>
- Your compiler version may not be supported/compatible for MATLAB.
- Please check <a href=http://www.mathworks.com/support/compilers/current_release>this MATLAB page</a> first and then specify the version
- number. For example, if g++ X.Y is supported, replace
- <pre>
- CXX = g++
- </pre>
- in the Makefile with
- <pre>
- CXX = g++-X.Y
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
- <a name="f8011"><b>Q: On 64bit Windows I compile the MATLAB interface without problem, but why errors occur while running it?</b></a>
- <br/>
- <p>
-
-
- Please make sure that you use
- the -largeArrayDims option in make.m. For example,
- <pre>
- mex -largeArrayDims -O -c svm.cpp
- </pre>
-
- Moreover, if you use Microsoft Visual Studio,
- probabally it is not properly installed.
- See the explanation
- <a href=http://www.mathworks.com/support/compilers/current_release/win64.html#n7>here</a>.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
- <a name="f802"><b>Q: Does the MATLAB interface provide a function to do scaling?</b></a>
- <br/>
- <p>
- It is extremely easy to do scaling under MATLAB.
- The following one-line code scale each feature to the range
- of [0,1]:
- <pre>
- (data - repmat(min(data,[],1),size(data,1),1))*spdiags(1./(max(data,[],1)-min(data,[],1))',0,size(data,2),size(data,2))
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
- <a name="f803"><b>Q: How could I use MATLAB interface for parameter selection?</b></a>
- <br/>
- <p>
- One can do this by a simple loop.
- See the following example:
- <pre>
- bestcv = 0;
- for log2c = -1:3,
- for log2g = -4:1,
- cmd = ['-v 5 -c ', num2str(2^log2c), ' -g ', num2str(2^log2g)];
- cv = svmtrain(heart_scale_label, heart_scale_inst, cmd);
- if (cv >= bestcv),
- bestcv = cv; bestc = 2^log2c; bestg = 2^log2g;
- end
- fprintf('%g %g %g (best c=%g, g=%g, rate=%g)\n', log2c, log2g, cv, bestc, bestg, bestcv);
- end
- end
- </pre>
- You may adjust the parameter range in the above loops.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
- <a name="f8031"><b>Q: I use MATLAB parallel programming toolbox on a multi-core environment for parameter selection. Why the program is even slower?</b></a>
- <br/>
- <p>
- Fabrizio Lacalandra of University of Pisa reported this issue.
- It seems the problem is caused by the screen output.
- If you disable the <b>info</b> function
- using <pre>#if 0,</pre> then the problem
- may be solved.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
- <a name="f8032"><b>Q: How to use LIBSVM with OpenMP under MATLAB/Octave?</b></a>
- <br/>
-
- <p>
- First, you must modify svm.cpp. Check the following faq,
-
- <a href="faq.html#f432">How can I use OpenMP to parallelize LIBSVM on a multicore/shared-memory computer?</a>
-
- <p>
- To build the MATLAB/Octave interface, we recommend using <b>make.m</b>.
- You must append '-fopenmp' to CXXFLAGS and add '-lgomp' to mex options in <b>make.m</b>.
- See details below.
-
- <p>
- For MATLAB users, the modified code is:
- <pre>
- mex CFLAGS="\$CFLAGS -std=c99" CXXFLAGS="\$CXXFLAGS -fopenmp" -largeArrayDims -I.. -lgomp svmtrain.c ../svm.cpp svm_model_matlab.c
- mex CFLAGS="\$CFLAGS -std=c99" CXXFLAGS="\$CXXFLAGS -fopenmp" -largeArrayDims -I.. -lgomp svmpredict.c ../svm.cpp svm_model_matlab.c
- </pre>
-
- <p>
- For Octave users, the modified code is:
- <pre>
- setenv('CXXFLAGS', '-fopenmp')
- mex -I.. -lgomp svmtrain.c ../svm.cpp svm_model_matlab.c
- mex -I.. -lgomp svmpredict.c ../svm.cpp svm_model_matlab.c
- </pre>
-
- <p>
- If make.m fails under matlab and you use <b>Makefile</b> to compile the codes,
- you must modify <b>two</b> files:
-
- <p>
- You must append '-fopenmp' to CFLAGS in <b>../Makefile</b> for C/C++ codes:
- <pre>
- CFLAGS = -Wall -Wconversion -O3 -fPIC -fopenmp -I$(MATLABDIR)/extern/include -I..
- </pre>
- and add '-lgomp' to MEX_OPTION in <b>Makefile</b> for the matlab/octave interface:
- <pre>
- MEX_OPTION += -lgomp
- </pre>
-
- <p>
- To run the code, you must specify the number of threads. For
- example, <b>before</b> executing matlab/octave, you run
- <pre>
- > export OMP_NUM_THREADS=8
- > matlab
- </pre>
- Here we assume Bash is used. Unfortunately, we do not know yet
- how to specify the number of threads within MATLAB/Octave. Our
- experiments show that
- <pre>
- >> setenv('OMP_NUM_THREADS', '8');
- </pre>
- does not work. Please contact us if you
- see how to solve this problem. On the other hand, you can
- specify the number of threads in the source code (thanks
- to comments from Ricardo Santiago-mozos):
- <pre>
- #pragma omp parallel for private(i) num_threads(8)
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
- <a name="f804"><b>Q: How could I generate the primal variable w of linear SVM?</b></a>
- <br/>
- <p>
- Let's start from the binary class and
- assume you have two labels -1 and +1.
- After obtaining the model from calling svmtrain,
- do the following to have w and b:
- <pre>
- w = model.SVs' * model.sv_coef;
- b = -model.rho;
-
- if model.Label(1) == -1
- w = -w;
- b = -b;
- end
- </pre>
- If you do regression or one-class SVM, then the if statement is not needed.
-
- <p> For multi-class SVM, we illustrate the setting
- in the following example of running the iris
- data, which have 3 classes
- <pre>
- > [y, x] = libsvmread('../../htdocs/libsvmtools/datasets/multiclass/iris.scale');
- > m = svmtrain(y, x, '-t 0')
-
- m =
-
- Parameters: [5x1 double]
- nr_class: 3
- totalSV: 42
- rho: [3x1 double]
- Label: [3x1 double]
- ProbA: []
- ProbB: []
- nSV: [3x1 double]
- sv_coef: [42x2 double]
- SVs: [42x4 double]
- </pre>
- sv_coef is like:
- <pre>
- +-+-+--------------------+
- |1|1| |
- |v|v| SVs from class 1 |
- |2|3| |
- +-+-+--------------------+
- |1|2| |
- |v|v| SVs from class 2 |
- |2|3| |
- +-+-+--------------------+
- |1|2| |
- |v|v| SVs from class 3 |
- |3|3| |
- +-+-+--------------------+
- </pre>
- so we need to see nSV of each classes.
- <pre>
- > m.nSV
-
- ans =
-
- 3
- 21
- 18
- </pre>
- Suppose the goal is to find the vector w of classes
- 1 vs 3. Then
- y_i alpha_i of training 1 vs 3 are
- <pre>
- > coef = [m.sv_coef(1:3,2); m.sv_coef(25:42,1)];
- </pre>
- and SVs are:
- <pre>
- > SVs = [m.SVs(1:3,:); m.SVs(25:42,:)];
- </pre>
- Hence, w is
- <pre>
- > w = SVs'*coef;
- </pre>
- For rho,
- <pre>
- > m.rho
-
- ans =
-
- 1.1465
- 0.3682
- -1.9969
- > b = -m.rho(2);
- </pre>
- because rho is arranged by 1vs2 1vs3 2vs3.
-
-
-
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
- <a name="f805"><b>Q: Is there an OCTAVE interface for libsvm?</b></a>
- <br/>
- <p>
- Yes, after libsvm 2.86, the matlab interface
- works on OCTAVE as well. Please use make.m by typing
- <pre>
- >> make
- </pre>
- under OCTAVE.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
- <a name="f806"><b>Q: How to handle the name conflict between svmtrain in the libsvm matlab interface and that in MATLAB bioinformatics toolbox?</b></a>
- <br/>
- <p>
- The easiest way is to rename the svmtrain binary
- file (e.g., svmtrain.mexw32 on 32-bit windows)
- to a different
- name (e.g., svmtrain2.mexw32).
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
- <a name="f807"><b>Q: On Windows I got an error message "Invalid MEX-file: Specific module not found" when running the pre-built MATLAB interface in the windows sub-directory. What should I do?</b></a>
- <br/>
- <p>
-
- The error usually happens
- when there are missing runtime components
- such as MSVCR100.dll on your Windows platform.
- You can use tools such as
- <a href=http://www.dependencywalker.com/>Dependency
- Walker</a> to find missing library files.
-
- <p>
- For example, if the pre-built MEX files are compiled by
- Visual C++ 2010,
- you must have installed
- Microsoft Visual C++ Redistributable Package 2010
- (vcredist_x86.exe). You can easily find the freely
- available file from Microsoft's web site.
-
- <p>
- For 64bit Windows, the situation is similar. If
- the pre-built files are by
- Visual C++ 2008, then you must have
- Microsoft Visual C++ Redistributable Package 2008
- (vcredist_x64.exe).
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
- <a name="f808"><b>Q: LIBSVM supports 1-vs-1 multi-class classification. If instead I would like to use 1-vs-rest, how to implement it using MATLAB interface?</b></a>
- <br/>
-
- <p>
- Please use code in the following <a href=../libsvmtools/ovr_multiclass>directory</a>. The following example shows how to
- train and test the problem dna (<a href=../libsvmtools/datasets/multiclass/dna.scale>training</a> and <a href=../libsvmtools/datasets/multiclass/dna.scale.t>testing</a>).
-
- <p> Load, train and predict data:
- <pre>
- [trainY trainX] = libsvmread('./dna.scale');
- [testY testX] = libsvmread('./dna.scale.t');
- model = ovrtrain(trainY, trainX, '-c 8 -g 4');
- [pred ac decv] = ovrpredict(testY, testX, model);
- fprintf('Accuracy = %g%%\n', ac * 100);
- </pre>
- Conduct CV on a grid of parameters
- <pre>
- bestcv = 0;
- for log2c = -1:2:3,
- for log2g = -4:2:1,
- cmd = ['-q -c ', num2str(2^log2c), ' -g ', num2str(2^log2g)];
- cv = get_cv_ac(trainY, trainX, cmd, 3);
- if (cv >= bestcv),
- bestcv = cv; bestc = 2^log2c; bestg = 2^log2g;
- end
- fprintf('%g %g %g (best c=%g, g=%g, rate=%g)\n', log2c, log2g, cv, bestc, bestg, bestcv);
- end
- end
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
- <a name="f809"><b>Q: I tried to install matlab interface on mac, but failed. What should I do?</b></a>
- <br/>
-
- <p>
- We assume that in a matlab command window you change directory to libsvm/matlab and type
- <pre>
- >> make
- </pre>
- We discuss the following situations.
-
- <ol>
- <li>An error message like "libsvmread.c:1:19: fatal error:
- stdio.h: No such file or directory" appears.
-
- <p>
- Reason: "make" looks for a C++ compiler, but
- no compiler is found. To get one, you can
- <ul>
- <li> Install XCode offered by Apple Inc.
- <li> Install XCode Command Line Tools.
- </ul>
-
- <p>
- <li> On OS X with Xcode 4.2+, I got an error message like "llvm-gcc-4.2:
- command not found."
-
- <p>
- Reason: Since Apple Inc. only ships llsvm-gcc instead of gcc-4.2,
- llvm-gcc-4.2 cannot be found.
-
- <p>
- If you are using Xcode 4.2-4.6,
- a related solution is offered at
- <a href=http://www.mathworks.com/matlabcentral/answers/94092>http://www.mathworks.com/matlabcentral/answers/94092</a>.
-
- <p>
- On the other hand, for Xcode 5 (including Xcode 4.2-4.6), in a Matlab command window, enter
- <ul>
- <li> cd (matlabroot)
- <li> cd bin
- <li> Backup your mexopts.sh first
- <li> edit mexopts.sh
- <li> Scroll down to "maci64" section. Change
- <pre>
- CC='llvm-gcc-4.2'
- CXX='llvm-g++-4.2'
- </pre>
- to
- <pre>
- CC='llvm-gcc'
- CXX='llvm-g++'
- </pre>
- </ul>
-
- Please also ensure that SDKROOT corresponds to the SDK version you are using.
-
- <p>
- <li> Other errors: you may check <a href=http://www.mathworks.com/matlabcentral/answers/94092>http://www.mathworks.com/matlabcentral/answers/94092</a>.
-
- </ol>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
- <a name="f810"><b>Q: I tried to install octave interface on windows, but failed. What should I do?</b></a>
- <br/>
-
- <p>
- This may be due to
- that Octave's math.h file does not
- refer to the correct location of Visual Studio's math.h.
- Please see <a href=https://flyingpies.wordpress.com/2012/11/20/getting-libsvm-to-work-with-octave-on-windows/>this nice page</a> for detailed
- instructions.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <p align="middle">
- <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">LIBSVM home page</a>
- </p>
- </body>
- </html>
|