You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 2.4 kB

7 years ago
7 years ago
7 years ago
7 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647
  1. # py-graph
  2. a python package for graph kernels.
  3. ## requirements
  4. * numpy - 1.13.3
  5. * scipy - 1.0.0
  6. * matplotlib - 2.1.0
  7. * networkx - 2.0
  8. * sklearn - 0.19.1
  9. * tabulate - 0.8.2
  10. ## results with minimal test RMSE for each kernel on dataset Asyclic
  11. -- All the kernels are tested on dataset Asyclic, which consists of 185 molecules (graphs).
  12. -- The criteria used for prediction are SVM for classification and kernel Ridge regression for regression.
  13. -- For predition we randomly divide the data in train and test subset, where 90% of entire dataset is for training and rest for testing. 10 splits are performed. For each split, we first train on the train data, then evaluate the performance on the test set. We choose the optimal parameters for the test set and finally provide the corresponding performance. The final results correspond to the average of the performances on the test sets.
  14. | Kernels | RMSE(℃) | std(℃) | parameter | k_time |
  15. |---------------|:---------:|:--------:|-------------:|-------:|
  16. | shortest path | 36.40 | 5.35 | - | - |
  17. | marginalized | 17.90 | 6.59 | p_quit = 0.1 | - |
  18. | path | 14.27 | 6.37 | - | - |
  19. | WL subtree | 9.00 | 6.37 | height = 1 | 0.85" |
  20. **In each line, paremeter is the one with which the kenrel achieves the best results.
  21. In each line, k_time is the time spent on building the kernel matrix.
  22. See detail results in [results.md](pygraph/kernels/results.md).**
  23. ## updates
  24. ### 2017.12.22
  25. * ADD calculation of the time spend to acquire kernel matrices for each kernel. - linlin
  26. * MOD floydTransformation function, calculate shortest paths taking into consideration user-defined edge weight. - linlin
  27. * MOD implementation of nodes and edges attributes genericity for all kernels. - linlin
  28. * ADD detailed results file results.md. - linlin
  29. ### 2017.12.21
  30. * MOD Weisfeiler-Lehman subtree kernel and the test code. - linlin
  31. ### 2017.12.20
  32. * ADD Weisfeiler-Lehman subtree kernel and its result on dataset Asyclic. - linlin
  33. ### 2017.12.07
  34. * ADD mean average path kernel and its result on dataset Asyclic. - linlin
  35. * ADD delta kernel. - linlin
  36. * MOD reconstruction the code of marginalized kernel. - linlin
  37. ### 2017.12.05
  38. * ADD marginalized kernel and its result. - linlin
  39. * ADD list required python packages in file README.md. - linlin
  40. ### 2017.11.24
  41. * ADD shortest path kernel and its result. - linlin

A Python package for graph kernels, graph edit distances and graph pre-image problem.