You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataset.py 24 kB

5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Thu Mar 26 18:48:27 2020
  5. @author: ljia
  6. """
  7. import numpy as np
  8. import networkx as nx
  9. from gklearn.utils.graph_files import load_dataset
  10. import os
  11. class Dataset(object):
  12. def __init__(self, filename=None, filename_targets=None, **kwargs):
  13. if filename is None:
  14. self.__graphs = None
  15. self.__targets = None
  16. self.__node_labels = None
  17. self.__edge_labels = None
  18. self.__node_attrs = None
  19. self.__edge_attrs = None
  20. else:
  21. self.load_dataset(filename, filename_targets=filename_targets, **kwargs)
  22. self.__substructures = None
  23. self.__node_label_dim = None
  24. self.__edge_label_dim = None
  25. self.__directed = None
  26. self.__dataset_size = None
  27. self.__total_node_num = None
  28. self.__ave_node_num = None
  29. self.__min_node_num = None
  30. self.__max_node_num = None
  31. self.__total_edge_num = None
  32. self.__ave_edge_num = None
  33. self.__min_edge_num = None
  34. self.__max_edge_num = None
  35. self.__ave_node_degree = None
  36. self.__min_node_degree = None
  37. self.__max_node_degree = None
  38. self.__ave_fill_factor = None
  39. self.__min_fill_factor = None
  40. self.__max_fill_factor = None
  41. self.__node_label_nums = None
  42. self.__edge_label_nums = None
  43. self.__node_attr_dim = None
  44. self.__edge_attr_dim = None
  45. self.__class_number = None
  46. def load_dataset(self, filename, filename_targets=None, **kwargs):
  47. self.__graphs, self.__targets, label_names = load_dataset(filename, filename_targets=filename_targets, **kwargs)
  48. self.__node_labels = label_names['node_labels']
  49. self.__node_attrs = label_names['node_attrs']
  50. self.__edge_labels = label_names['edge_labels']
  51. self.__edge_attrs = label_names['edge_attrs']
  52. self.clean_labels()
  53. def load_graphs(self, graphs, targets=None):
  54. # this has to be followed by set_labels().
  55. self.__graphs = graphs
  56. self.__targets = targets
  57. # self.set_labels_attrs() # @todo
  58. def load_predefined_dataset(self, ds_name):
  59. current_path = os.path.dirname(os.path.realpath(__file__)) + '/'
  60. if ds_name == 'Acyclic':
  61. ds_file = current_path + '../../datasets/Acyclic/dataset_bps.ds'
  62. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  63. elif ds_name == 'AIDS':
  64. ds_file = current_path + '../../datasets/AIDS/AIDS_A.txt'
  65. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  66. elif ds_name == 'Alkane':
  67. ds_file = current_path + '../../datasets/Alkane/dataset.ds'
  68. fn_targets = current_path + '../../datasets/Alkane/dataset_boiling_point_names.txt'
  69. self.__graphs, self.__targets, label_names = load_dataset(ds_file, filename_targets=fn_targets)
  70. elif ds_name == 'COIL-DEL':
  71. ds_file = current_path + '../../datasets/COIL-DEL/COIL-DEL_A.txt'
  72. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  73. elif ds_name == 'COIL-RAG':
  74. ds_file = current_path + '../../datasets/COIL-RAG/COIL-RAG_A.txt'
  75. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  76. elif ds_name == 'COLORS-3':
  77. ds_file = current_path + '../../datasets/COLORS-3/COLORS-3_A.txt'
  78. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  79. elif ds_name == 'Cuneiform':
  80. ds_file = current_path + '../../datasets/Cuneiform/Cuneiform_A.txt'
  81. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  82. elif ds_name == 'DD':
  83. ds_file = current_path + '../../datasets/DD/DD_A.txt'
  84. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  85. elif ds_name == 'Fingerprint':
  86. ds_file = current_path + '../../datasets/Fingerprint/Fingerprint_A.txt'
  87. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  88. elif ds_name == 'FRANKENSTEIN':
  89. ds_file = current_path + '../../datasets/FRANKENSTEIN/FRANKENSTEIN_A.txt'
  90. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  91. elif ds_name == 'Letter-high': # node non-symb
  92. ds_file = current_path + '../../datasets/Letter-high/Letter-high_A.txt'
  93. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  94. elif ds_name == 'Letter-low': # node non-symb
  95. ds_file = current_path + '../../datasets/Letter-low/Letter-low_A.txt'
  96. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  97. elif ds_name == 'Letter-med': # node non-symb
  98. ds_file = current_path + '../../datasets/Letter-med/Letter-med_A.txt'
  99. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  100. elif ds_name == 'MAO':
  101. ds_file = current_path + '../../datasets/MAO/dataset.ds'
  102. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  103. elif ds_name == 'Monoterpenoides':
  104. ds_file = current_path + '../../datasets/Monoterpenoides/dataset_10+.ds'
  105. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  106. elif ds_name == 'MUTAG':
  107. ds_file = current_path + '../../datasets/MUTAG/MUTAG_A.txt'
  108. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  109. elif ds_name == 'PAH':
  110. ds_file = current_path + '../../datasets/PAH/dataset.ds'
  111. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  112. elif ds_name == 'SYNTHETIC':
  113. pass
  114. elif ds_name == 'SYNTHETICnew':
  115. ds_file = current_path + '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt'
  116. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  117. elif ds_name == 'Synthie':
  118. pass
  119. else:
  120. raise Exception('The dataset name "', ds_name, '" is not pre-defined.')
  121. self.__node_labels = label_names['node_labels']
  122. self.__node_attrs = label_names['node_attrs']
  123. self.__edge_labels = label_names['edge_labels']
  124. self.__edge_attrs = label_names['edge_attrs']
  125. self.clean_labels()
  126. def set_labels(self, node_labels=[], node_attrs=[], edge_labels=[], edge_attrs=[]):
  127. self.__node_labels = node_labels
  128. self.__node_attrs = node_attrs
  129. self.__edge_labels = edge_labels
  130. self.__edge_attrs = edge_attrs
  131. def set_labels_attrs(self, node_labels=None, node_attrs=None, edge_labels=None, edge_attrs=None):
  132. # @todo: remove labels which have only one possible values.
  133. if node_labels is None:
  134. self.__node_labels = self.__graphs[0].graph['node_labels']
  135. # # graphs are considered node unlabeled if all nodes have the same label.
  136. # infos.update({'node_labeled': is_nl if node_label_num > 1 else False})
  137. if node_attrs is None:
  138. self.__node_attrs = self.__graphs[0].graph['node_attrs']
  139. # for G in Gn:
  140. # for n in G.nodes(data=True):
  141. # if 'attributes' in n[1]:
  142. # return len(n[1]['attributes'])
  143. # return 0
  144. if edge_labels is None:
  145. self.__edge_labels = self.__graphs[0].graph['edge_labels']
  146. # # graphs are considered edge unlabeled if all edges have the same label.
  147. # infos.update({'edge_labeled': is_el if edge_label_num > 1 else False})
  148. if edge_attrs is None:
  149. self.__edge_attrs = self.__graphs[0].graph['edge_attrs']
  150. # for G in Gn:
  151. # if nx.number_of_edges(G) > 0:
  152. # for e in G.edges(data=True):
  153. # if 'attributes' in e[2]:
  154. # return len(e[2]['attributes'])
  155. # return 0
  156. def get_dataset_infos(self, keys=None):
  157. """Computes and returns the structure and property information of the graph dataset.
  158. Parameters
  159. ----------
  160. keys : list
  161. List of strings which indicate which informations will be returned. The
  162. possible choices includes:
  163. 'substructures': sub-structures graphs contains, including 'linear', 'non
  164. linear' and 'cyclic'.
  165. 'node_label_dim': whether vertices have symbolic labels.
  166. 'edge_label_dim': whether egdes have symbolic labels.
  167. 'directed': whether graphs in dataset are directed.
  168. 'dataset_size': number of graphs in dataset.
  169. 'total_node_num': total number of vertices of all graphs in dataset.
  170. 'ave_node_num': average number of vertices of graphs in dataset.
  171. 'min_node_num': minimum number of vertices of graphs in dataset.
  172. 'max_node_num': maximum number of vertices of graphs in dataset.
  173. 'total_edge_num': total number of edges of all graphs in dataset.
  174. 'ave_edge_num': average number of edges of graphs in dataset.
  175. 'min_edge_num': minimum number of edges of graphs in dataset.
  176. 'max_edge_num': maximum number of edges of graphs in dataset.
  177. 'ave_node_degree': average vertex degree of graphs in dataset.
  178. 'min_node_degree': minimum vertex degree of graphs in dataset.
  179. 'max_node_degree': maximum vertex degree of graphs in dataset.
  180. 'ave_fill_factor': average fill factor (number_of_edges /
  181. (number_of_nodes ** 2)) of graphs in dataset.
  182. 'min_fill_factor': minimum fill factor of graphs in dataset.
  183. 'max_fill_factor': maximum fill factor of graphs in dataset.
  184. 'node_label_nums': list of numbers of symbolic vertex labels of graphs in dataset.
  185. 'edge_label_nums': list number of symbolic edge labels of graphs in dataset.
  186. 'node_attr_dim': number of dimensions of non-symbolic vertex labels.
  187. Extracted from the 'attributes' attribute of graph nodes.
  188. 'edge_attr_dim': number of dimensions of non-symbolic edge labels.
  189. Extracted from the 'attributes' attribute of graph edges.
  190. 'class_number': number of classes. Only available for classification problems.
  191. All informations above will be returned if `keys` is not given.
  192. Return
  193. ------
  194. dict
  195. Information of the graph dataset keyed by `keys`.
  196. """
  197. infos = {}
  198. if keys == None:
  199. keys = [
  200. 'substructures',
  201. 'node_label_dim',
  202. 'edge_label_dim',
  203. 'directed',
  204. 'dataset_size',
  205. 'total_node_num',
  206. 'ave_node_num',
  207. 'min_node_num',
  208. 'max_node_num',
  209. 'total_edge_num',
  210. 'ave_edge_num',
  211. 'min_edge_num',
  212. 'max_edge_num',
  213. 'ave_node_degree',
  214. 'min_node_degree',
  215. 'max_node_degree',
  216. 'ave_fill_factor',
  217. 'min_fill_factor',
  218. 'max_fill_factor',
  219. 'node_label_nums',
  220. 'edge_label_nums',
  221. 'node_attr_dim',
  222. 'edge_attr_dim',
  223. 'class_number',
  224. ]
  225. # dataset size
  226. if 'dataset_size' in keys:
  227. if self.__dataset_size is None:
  228. self.__dataset_size = self.__get_dataset_size()
  229. infos['dataset_size'] = self.__dataset_size
  230. # graph node number
  231. if any(i in keys for i in ['total_node_num', 'ave_node_num', 'min_node_num', 'max_node_num']):
  232. all_node_nums = self.__get_all_node_nums()
  233. if 'total_node_num' in keys:
  234. if self.__total_node_num is None:
  235. self.__total_node_num = self.__get_total_node_num(all_node_nums)
  236. infos['total_node_num'] = self.__total_node_num
  237. if 'ave_node_num' in keys:
  238. if self.__ave_node_num is None:
  239. self.__ave_node_num = self.__get_ave_node_num(all_node_nums)
  240. infos['ave_node_num'] = self.__ave_node_num
  241. if 'min_node_num' in keys:
  242. if self.__min_node_num is None:
  243. self.__min_node_num = self.__get_min_node_num(all_node_nums)
  244. infos['min_node_num'] = self.__min_node_num
  245. if 'max_node_num' in keys:
  246. if self.__max_node_num is None:
  247. self.__max_node_num = self.__get_max_node_num(all_node_nums)
  248. infos['max_node_num'] = self.__max_node_num
  249. # graph edge number
  250. if any(i in keys for i in ['total_edge_num', 'ave_edge_num', 'min_edge_num', 'max_edge_num']):
  251. all_edge_nums = self.__get_all_edge_nums()
  252. if 'total_edge_num' in keys:
  253. if self.__total_edge_num is None:
  254. self.__total_edge_num = self.__get_total_edge_num(all_edge_nums)
  255. infos['total_edge_num'] = self.__total_edge_num
  256. if 'ave_edge_num' in keys:
  257. if self.__ave_edge_num is None:
  258. self.__ave_edge_num = self.__get_ave_edge_num(all_edge_nums)
  259. infos['ave_edge_num'] = self.__ave_edge_num
  260. if 'max_edge_num' in keys:
  261. if self.__max_edge_num is None:
  262. self.__max_edge_num = self.__get_max_edge_num(all_edge_nums)
  263. infos['max_edge_num'] = self.__max_edge_num
  264. if 'min_edge_num' in keys:
  265. if self.__min_edge_num is None:
  266. self.__min_edge_num = self.__get_min_edge_num(all_edge_nums)
  267. infos['min_edge_num'] = self.__min_edge_num
  268. # label number
  269. if 'node_label_dim' in keys:
  270. if self.__node_label_dim is None:
  271. self.__node_label_dim = self.__get_node_label_dim()
  272. infos['node_label_dim'] = self.__node_label_dim
  273. if 'node_label_nums' in keys:
  274. if self.__node_label_nums is None:
  275. self.__node_label_nums = {}
  276. for node_label in self.__node_labels:
  277. self.__node_label_nums[node_label] = self.__get_node_label_num(node_label)
  278. infos['node_label_nums'] = self.__node_label_nums
  279. if 'edge_label_dim' in keys:
  280. if self.__edge_label_dim is None:
  281. self.__edge_label_dim = self.__get_edge_label_dim()
  282. infos['edge_label_dim'] = self.__edge_label_dim
  283. if 'edge_label_nums' in keys:
  284. if self.__edge_label_nums is None:
  285. self.__edge_label_nums = {}
  286. for edge_label in self.__edge_labels:
  287. self.__edge_label_nums[edge_label] = self.__get_edge_label_num(edge_label)
  288. infos['edge_label_nums'] = self.__edge_label_nums
  289. if 'directed' in keys or 'substructures' in keys:
  290. if self.__directed is None:
  291. self.__directed = self.__is_directed()
  292. infos['directed'] = self.__directed
  293. # node degree
  294. if any(i in keys for i in ['ave_node_degree', 'max_node_degree', 'min_node_degree']):
  295. all_node_degrees = self.__get_all_node_degrees()
  296. if 'ave_node_degree' in keys:
  297. if self.__ave_node_degree is None:
  298. self.__ave_node_degree = self.__get_ave_node_degree(all_node_degrees)
  299. infos['ave_node_degree'] = self.__ave_node_degree
  300. if 'max_node_degree' in keys:
  301. if self.__max_node_degree is None:
  302. self.__max_node_degree = self.__get_max_node_degree(all_node_degrees)
  303. infos['max_node_degree'] = self.__max_node_degree
  304. if 'min_node_degree' in keys:
  305. if self.__min_node_degree is None:
  306. self.__min_node_degree = self.__get_min_node_degree(all_node_degrees)
  307. infos['min_node_degree'] = self.__min_node_degree
  308. # fill factor
  309. if any(i in keys for i in ['ave_fill_factor', 'max_fill_factor', 'min_fill_factor']):
  310. all_fill_factors = self.__get_all_fill_factors()
  311. if 'ave_fill_factor' in keys:
  312. if self.__ave_fill_factor is None:
  313. self.__ave_fill_factor = self.__get_ave_fill_factor(all_fill_factors)
  314. infos['ave_fill_factor'] = self.__ave_fill_factor
  315. if 'max_fill_factor' in keys:
  316. if self.__max_fill_factor is None:
  317. self.__max_fill_factor = self.__get_max_fill_factor(all_fill_factors)
  318. infos['max_fill_factor'] = self.__max_fill_factor
  319. if 'min_fill_factor' in keys:
  320. if self.__min_fill_factor is None:
  321. self.__min_fill_factor = self.__get_min_fill_factor(all_fill_factors)
  322. infos['min_fill_factor'] = self.__min_fill_factor
  323. if 'substructures' in keys:
  324. if self.__substructures is None:
  325. self.__substructures = self.__get_substructures()
  326. infos['substructures'] = self.__substructures
  327. if 'class_number' in keys:
  328. if self.__class_number is None:
  329. self.__class_number = self.__get_class_number()
  330. infos['class_number'] = self.__class_number
  331. if 'node_attr_dim' in keys:
  332. if self.__node_attr_dim is None:
  333. self.__node_attr_dim = self.__get_node_attr_dim()
  334. infos['node_attr_dim'] = self.__node_attr_dim
  335. if 'edge_attr_dim' in keys:
  336. if self.__edge_attr_dim is None:
  337. self.__edge_attr_dim = self.__get_edge_attr_dim()
  338. infos['edge_attr_dim'] = self.__edge_attr_dim
  339. return infos
  340. def print_graph_infos(self, infos):
  341. from collections import OrderedDict
  342. keys = list(infos.keys())
  343. print(OrderedDict(sorted(infos.items(), key=lambda i: keys.index(i[0]))))
  344. def remove_labels(self, node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]):
  345. node_labels = [item for item in node_labels if item in self.__node_labels]
  346. edge_labels = [item for item in edge_labels if item in self.__edge_labels]
  347. node_attrs = [item for item in node_attrs if item in self.__node_attrs]
  348. edge_attrs = [item for item in edge_attrs if item in self.__edge_attrs]
  349. for g in self.__graphs:
  350. for nd in g.nodes():
  351. for nl in node_labels:
  352. del g.nodes[nd][nl]
  353. for na in node_attrs:
  354. del g.nodes[nd][na]
  355. for ed in g.edges():
  356. for el in edge_labels:
  357. del g.edges[ed][el]
  358. for ea in edge_attrs:
  359. del g.edges[ed][ea]
  360. if len(node_labels) > 0:
  361. self.__node_labels = [nl for nl in self.__node_labels if nl not in node_labels]
  362. if len(edge_labels) > 0:
  363. self.__edge_labels = [el for el in self.__edge_labels if el not in edge_labels]
  364. if len(node_attrs) > 0:
  365. self.__node_attrs = [na for na in self.__node_attrs if na not in node_attrs]
  366. if len(edge_attrs) > 0:
  367. self.__edge_attrs = [ea for ea in self.__edge_attrs if ea not in edge_attrs]
  368. def clean_labels(self):
  369. labels = []
  370. for name in self.__node_labels:
  371. label = set()
  372. for G in self.__graphs:
  373. label = label | set(nx.get_node_attributes(G, name).values())
  374. if len(label) > 1:
  375. labels.append(name)
  376. break
  377. if len(label) < 2:
  378. for G in self.__graphs:
  379. for nd in G.nodes():
  380. del G.nodes[nd][name]
  381. self.__node_labels = labels
  382. labels = []
  383. for name in self.__edge_labels:
  384. label = set()
  385. for G in self.__graphs:
  386. label = label | set(nx.get_edge_attributes(G, name).values())
  387. if len(label) > 1:
  388. labels.append(name)
  389. break
  390. if len(label) < 2:
  391. for G in self.__graphs:
  392. for ed in G.edges():
  393. del G.edges[ed][name]
  394. self.__edge_labels = labels
  395. labels = []
  396. for name in self.__node_attrs:
  397. label = set()
  398. for G in self.__graphs:
  399. label = label | set(nx.get_node_attributes(G, name).values())
  400. if len(label) > 1:
  401. labels.append(name)
  402. break
  403. if len(label) < 2:
  404. for G in self.__graphs:
  405. for nd in G.nodes():
  406. del G.nodes[nd][name]
  407. self.__node_attrs = labels
  408. labels = []
  409. for name in self.__edge_attrs:
  410. label = set()
  411. for G in self.__graphs:
  412. label = label | set(nx.get_edge_attributes(G, name).values())
  413. if len(label) > 1:
  414. labels.append(name)
  415. break
  416. if len(label) < 2:
  417. for G in self.__graphs:
  418. for ed in G.edges():
  419. del G.edges[ed][name]
  420. self.__edge_attrs = labels
  421. def cut_graphs(self, range_):
  422. self.__graphs = [self.__graphs[i] for i in range_]
  423. if self.__targets is not None:
  424. self.__targets = [self.__targets[i] for i in range_]
  425. self.clean_labels()
  426. def trim_dataset(self, edge_required=False):
  427. if edge_required:
  428. trimed_pairs = [(idx, g) for idx, g in enumerate(self.__graphs) if (nx.number_of_nodes(g) != 0 and nx.number_of_edges(g) != 0)]
  429. else:
  430. trimed_pairs = [(idx, g) for idx, g in enumerate(self.__graphs) if nx.number_of_nodes(g) != 0]
  431. idx = [p[0] for p in trimed_pairs]
  432. self.__graphs = [p[1] for p in trimed_pairs]
  433. self.__targets = [self.__targets[i] for i in idx]
  434. self.clean_labels()
  435. def copy(self):
  436. dataset = Dataset()
  437. graphs = self.__graphs.copy() if self.__graphs is not None else None
  438. target = self.__targets.copy() if self.__targets is not None else None
  439. node_labels = self.__node_labels.copy() if self.__node_labels is not None else None
  440. node_attrs = self.__node_attrs.copy() if self.__node_attrs is not None else None
  441. edge_labels = self.__edge_labels.copy() if self.__edge_labels is not None else None
  442. edge_attrs = self.__edge_attrs.copy() if self.__edge_attrs is not None else None
  443. dataset.load_graphs(graphs, target)
  444. dataset.set_labels(node_labels=node_labels, node_attrs=node_attrs, edge_labels=edge_labels, edge_attrs=edge_attrs)
  445. # @todo: clean_labels and add other class members?
  446. return dataset
  447. def __get_dataset_size(self):
  448. return len(self.__graphs)
  449. def __get_all_node_nums(self):
  450. return [nx.number_of_nodes(G) for G in self.__graphs]
  451. def __get_total_node_nums(self, all_node_nums):
  452. return np.sum(all_node_nums)
  453. def __get_ave_node_num(self, all_node_nums):
  454. return np.mean(all_node_nums)
  455. def __get_min_node_num(self, all_node_nums):
  456. return np.amin(all_node_nums)
  457. def __get_max_node_num(self, all_node_nums):
  458. return np.amax(all_node_nums)
  459. def __get_all_edge_nums(self):
  460. return [nx.number_of_edges(G) for G in self.__graphs]
  461. def __get_total_edge_nums(self, all_edge_nums):
  462. return np.sum(all_edge_nums)
  463. def __get_ave_edge_num(self, all_edge_nums):
  464. return np.mean(all_edge_nums)
  465. def __get_min_edge_num(self, all_edge_nums):
  466. return np.amin(all_edge_nums)
  467. def __get_max_edge_num(self, all_edge_nums):
  468. return np.amax(all_edge_nums)
  469. def __get_node_label_dim(self):
  470. return len(self.__node_labels)
  471. def __get_node_label_num(self, node_label):
  472. nl = set()
  473. for G in self.__graphs:
  474. nl = nl | set(nx.get_node_attributes(G, node_label).values())
  475. return len(nl)
  476. def __get_edge_label_dim(self):
  477. return len(self.__edge_labels)
  478. def __get_edge_label_num(self, edge_label):
  479. el = set()
  480. for G in self.__graphs:
  481. el = el | set(nx.get_edge_attributes(G, edge_label).values())
  482. return len(el)
  483. def __is_directed(self):
  484. return nx.is_directed(self.__graphs[0])
  485. def __get_all_node_degrees(self):
  486. return [np.mean(list(dict(G.degree()).values())) for G in self.__graphs]
  487. def __get_ave_node_degree(self, all_node_degrees):
  488. return np.mean(all_node_degrees)
  489. def __get_max_node_degree(self, all_node_degrees):
  490. return np.amax(all_node_degrees)
  491. def __get_min_node_degree(self, all_node_degrees):
  492. return np.amin(all_node_degrees)
  493. def __get_all_fill_factors(self):
  494. """
  495. Get fill factor, the number of non-zero entries in the adjacency matrix.
  496. Returns
  497. -------
  498. list[float]
  499. List of fill factors for all graphs.
  500. """
  501. return [nx.number_of_edges(G) / (nx.number_of_nodes(G) ** 2) for G in self.__graphs]
  502. def __get_ave_fill_factor(self, all_fill_factors):
  503. return np.mean(all_fill_factors)
  504. def __get_max_fill_factor(self, all_fill_factors):
  505. return np.amax(all_fill_factors)
  506. def __get_min_fill_factor(self, all_fill_factors):
  507. return np.amin(all_fill_factors)
  508. def __get_substructures(self):
  509. subs = set()
  510. for G in self.__graphs:
  511. degrees = list(dict(G.degree()).values())
  512. if any(i == 2 for i in degrees):
  513. subs.add('linear')
  514. if np.amax(degrees) >= 3:
  515. subs.add('non linear')
  516. if 'linear' in subs and 'non linear' in subs:
  517. break
  518. if self.__directed:
  519. for G in self.__graphs:
  520. if len(list(nx.find_cycle(G))) > 0:
  521. subs.add('cyclic')
  522. break
  523. # else:
  524. # # @todo: this method does not work for big graph with large amount of edges like D&D, try a better way.
  525. # upper = np.amin([nx.number_of_edges(G) for G in Gn]) * 2 + 10
  526. # for G in Gn:
  527. # if (nx.number_of_edges(G) < upper):
  528. # cyc = list(nx.simple_cycles(G.to_directed()))
  529. # if any(len(i) > 2 for i in cyc):
  530. # subs.add('cyclic')
  531. # break
  532. # if 'cyclic' not in subs:
  533. # for G in Gn:
  534. # cyc = list(nx.simple_cycles(G.to_directed()))
  535. # if any(len(i) > 2 for i in cyc):
  536. # subs.add('cyclic')
  537. # break
  538. return subs
  539. def __get_class_num(self):
  540. return len(set(self.__targets))
  541. def __get_node_attr_dim(self):
  542. return len(self.__node_attrs)
  543. def __get_edge_attr_dim(self):
  544. return len(self.__edge_attrs)
  545. @property
  546. def graphs(self):
  547. return self.__graphs
  548. @property
  549. def targets(self):
  550. return self.__targets
  551. @property
  552. def node_labels(self):
  553. return self.__node_labels
  554. @property
  555. def edge_labels(self):
  556. return self.__edge_labels
  557. @property
  558. def node_attrs(self):
  559. return self.__node_attrs
  560. @property
  561. def edge_attrs(self):
  562. return self.__edge_attrs
  563. def split_dataset_by_target(dataset):
  564. from gklearn.preimage.utils import get_same_item_indices
  565. graphs = dataset.graphs
  566. targets = dataset.targets
  567. datasets = []
  568. idx_targets = get_same_item_indices(targets)
  569. for key, val in idx_targets.items():
  570. sub_graphs = [graphs[i] for i in val]
  571. sub_dataset = Dataset()
  572. sub_dataset.load_graphs(sub_graphs, [key] * len(val))
  573. node_labels = dataset.node_labels.copy() if dataset.node_labels is not None else None
  574. node_attrs = dataset.node_attrs.copy() if dataset.node_attrs is not None else None
  575. edge_labels = dataset.edge_labels.copy() if dataset.edge_labels is not None else None
  576. edge_attrs = dataset.edge_attrs.copy() if dataset.edge_attrs is not None else None
  577. sub_dataset.set_labels(node_labels=node_labels, node_attrs=node_attrs, edge_labels=edge_labels, edge_attrs=edge_attrs)
  578. datasets.append(sub_dataset)
  579. # @todo: clean_labels?
  580. return datasets

A Python package for graph kernels, graph edit distances and graph pre-image problem.