You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

treeletKernel.py 18 kB

5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
  1. """
  2. @author: linlin
  3. @references:
  4. [1] Gaüzère B, Brun L, Villemin D. Two new graphs kernels in
  5. chemoinformatics. Pattern Recognition Letters. 2012 Nov 1;33(15):2038-47.
  6. """
  7. import sys
  8. import time
  9. from collections import Counter
  10. from itertools import chain
  11. from functools import partial
  12. from multiprocessing import Pool
  13. from tqdm import tqdm
  14. import networkx as nx
  15. import numpy as np
  16. from gklearn.utils.graphdataset import get_dataset_attributes
  17. from gklearn.utils.parallel import parallel_gm
  18. def treeletkernel(*args,
  19. sub_kernel,
  20. node_label='atom',
  21. edge_label='bond_type',
  22. parallel='imap_unordered',
  23. n_jobs=None,
  24. chunksize=None,
  25. verbose=True):
  26. """Compute treelet graph kernels between graphs.
  27. Parameters
  28. ----------
  29. Gn : List of NetworkX graph
  30. List of graphs between which the kernels are computed.
  31. G1, G2 : NetworkX graphs
  32. Two graphs between which the kernel is computed.
  33. sub_kernel : function
  34. The sub-kernel between 2 real number vectors. Each vector counts the
  35. numbers of isomorphic treelets in a graph.
  36. node_label : string
  37. Node attribute used as label. The default node label is atom.
  38. edge_label : string
  39. Edge attribute used as label. The default edge label is bond_type.
  40. parallel : string/None
  41. Which paralleliztion method is applied to compute the kernel. The
  42. Following choices are available:
  43. 'imap_unordered': use Python's multiprocessing.Pool.imap_unordered
  44. method.
  45. None: no parallelization is applied.
  46. n_jobs : int
  47. Number of jobs for parallelization. The default is to use all
  48. computational cores. This argument is only valid when one of the
  49. parallelization method is applied.
  50. Return
  51. ------
  52. Kmatrix : Numpy matrix
  53. Kernel matrix, each element of which is the treelet kernel between 2 praphs.
  54. """
  55. # pre-process
  56. Gn = args[0] if len(args) == 1 else [args[0], args[1]]
  57. Gn = [g.copy() for g in Gn]
  58. Kmatrix = np.zeros((len(Gn), len(Gn)))
  59. ds_attrs = get_dataset_attributes(Gn,
  60. attr_names=['node_labeled', 'edge_labeled', 'is_directed'],
  61. node_label=node_label, edge_label=edge_label)
  62. labeled = False
  63. if ds_attrs['node_labeled'] or ds_attrs['edge_labeled']:
  64. labeled = True
  65. if not ds_attrs['node_labeled']:
  66. for G in Gn:
  67. nx.set_node_attributes(G, '0', 'atom')
  68. if not ds_attrs['edge_labeled']:
  69. for G in Gn:
  70. nx.set_edge_attributes(G, '0', 'bond_type')
  71. start_time = time.time()
  72. # ---- use pool.imap_unordered to parallel and track progress. ----
  73. if parallel == 'imap_unordered':
  74. # get all canonical keys of all graphs before computing kernels to save
  75. # time, but this may cost a lot of memory for large dataset.
  76. pool = Pool(n_jobs)
  77. itr = zip(Gn, range(0, len(Gn)))
  78. if chunksize is None:
  79. if len(Gn) < 100 * n_jobs:
  80. chunksize = int(len(Gn) / n_jobs) + 1
  81. else:
  82. chunksize = 100
  83. canonkeys = [[] for _ in range(len(Gn))]
  84. get_partial = partial(wrapper_get_canonkeys, node_label, edge_label,
  85. labeled, ds_attrs['is_directed'])
  86. if verbose:
  87. iterator = tqdm(pool.imap_unordered(get_partial, itr, chunksize),
  88. desc='getting canonkeys', file=sys.stdout)
  89. else:
  90. iterator = pool.imap_unordered(get_partial, itr, chunksize)
  91. for i, ck in iterator:
  92. canonkeys[i] = ck
  93. pool.close()
  94. pool.join()
  95. # compute kernels.
  96. def init_worker(canonkeys_toshare):
  97. global G_canonkeys
  98. G_canonkeys = canonkeys_toshare
  99. do_partial = partial(wrapper_treeletkernel_do, sub_kernel)
  100. parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker,
  101. glbv=(canonkeys,), n_jobs=n_jobs, chunksize=chunksize, verbose=verbose)
  102. # ---- do not use parallelization. ----
  103. elif parallel is None:
  104. # get all canonical keys of all graphs before computing kernels to save
  105. # time, but this may cost a lot of memory for large dataset.
  106. canonkeys = []
  107. for g in (tqdm(Gn, desc='getting canonkeys', file=sys.stdout) if verbose else Gn):
  108. canonkeys.append(get_canonkeys(g, node_label, edge_label, labeled,
  109. ds_attrs['is_directed']))
  110. # compute kernels.
  111. from itertools import combinations_with_replacement
  112. itr = combinations_with_replacement(range(0, len(Gn)), 2)
  113. for i, j in (tqdm(itr, desc='getting canonkeys', file=sys.stdout) if verbose else itr):
  114. Kmatrix[i][j] = _treeletkernel_do(canonkeys[i], canonkeys[j], sub_kernel)
  115. Kmatrix[j][i] = Kmatrix[i][j] # @todo: no directed graph considered?
  116. else:
  117. raise Exception('No proper parallelization method designated.')
  118. run_time = time.time() - start_time
  119. if verbose:
  120. print("\n --- treelet kernel matrix of size %d built in %s seconds ---"
  121. % (len(Gn), run_time))
  122. return Kmatrix, run_time
  123. def _treeletkernel_do(canonkey1, canonkey2, sub_kernel):
  124. """Compute treelet graph kernel between 2 graphs.
  125. Parameters
  126. ----------
  127. canonkey1, canonkey2 : list
  128. List of canonical keys in 2 graphs, where each key is represented by a string.
  129. Return
  130. ------
  131. kernel : float
  132. Treelet Kernel between 2 graphs.
  133. """
  134. keys = set(canonkey1.keys()) & set(canonkey2.keys()) # find same canonical keys in both graphs
  135. vector1 = np.array([(canonkey1[key] if (key in canonkey1.keys()) else 0) for key in keys])
  136. vector2 = np.array([(canonkey2[key] if (key in canonkey2.keys()) else 0) for key in keys])
  137. kernel = sub_kernel(vector1, vector2)
  138. return kernel
  139. def wrapper_treeletkernel_do(sub_kernel, itr):
  140. i = itr[0]
  141. j = itr[1]
  142. return i, j, _treeletkernel_do(G_canonkeys[i], G_canonkeys[j], sub_kernel)
  143. def get_canonkeys(G, node_label, edge_label, labeled, is_directed):
  144. """Generate canonical keys of all treelets in a graph.
  145. Parameters
  146. ----------
  147. G : NetworkX graphs
  148. The graph in which keys are generated.
  149. node_label : string
  150. node attribute used as label. The default node label is atom.
  151. edge_label : string
  152. edge attribute used as label. The default edge label is bond_type.
  153. labeled : boolean
  154. Whether the graphs are labeled. The default is True.
  155. Return
  156. ------
  157. canonkey/canonkey_l : dict
  158. For unlabeled graphs, canonkey is a dictionary which records amount of
  159. every tree pattern. For labeled graphs, canonkey_l is one which keeps
  160. track of amount of every treelet.
  161. """
  162. patterns = {} # a dictionary which consists of lists of patterns for all graphlet.
  163. canonkey = {} # canonical key, a dictionary which records amount of every tree pattern.
  164. ### structural analysis ###
  165. ### In this section, a list of patterns is generated for each graphlet,
  166. ### where every pattern is represented by nodes ordered by Morgan's
  167. ### extended labeling.
  168. # linear patterns
  169. patterns['0'] = G.nodes()
  170. canonkey['0'] = nx.number_of_nodes(G)
  171. for i in range(1, 6): # for i in range(1, 6):
  172. patterns[str(i)] = find_all_paths(G, i, is_directed)
  173. canonkey[str(i)] = len(patterns[str(i)])
  174. # n-star patterns
  175. patterns['3star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 3]
  176. patterns['4star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 4] # @todo: check self loop.
  177. patterns['5star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 5]
  178. # n-star patterns
  179. canonkey['6'] = len(patterns['3star'])
  180. canonkey['8'] = len(patterns['4star'])
  181. canonkey['d'] = len(patterns['5star'])
  182. # pattern 7
  183. patterns['7'] = [] # the 1st line of Table 1 in Ref [1]
  184. for pattern in patterns['3star']:
  185. for i in range(1, len(pattern)): # for each neighbor of node 0
  186. if G.degree(pattern[i]) >= 2:
  187. pattern_t = pattern[:]
  188. # set the node with degree >= 2 as the 4th node
  189. pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i]
  190. for neighborx in G[pattern[i]]:
  191. if neighborx != pattern[0]:
  192. new_pattern = pattern_t + [neighborx]
  193. patterns['7'].append(new_pattern)
  194. canonkey['7'] = len(patterns['7'])
  195. # pattern 11
  196. patterns['11'] = [] # the 4th line of Table 1 in Ref [1]
  197. for pattern in patterns['4star']:
  198. for i in range(1, len(pattern)):
  199. if G.degree(pattern[i]) >= 2:
  200. pattern_t = pattern[:]
  201. pattern_t[i], pattern_t[4] = pattern_t[4], pattern_t[i]
  202. for neighborx in G[pattern[i]]:
  203. if neighborx != pattern[0]:
  204. new_pattern = pattern_t + [ neighborx ]
  205. patterns['11'].append(new_pattern)
  206. canonkey['b'] = len(patterns['11'])
  207. # pattern 12
  208. patterns['12'] = [] # the 5th line of Table 1 in Ref [1]
  209. rootlist = [] # a list of root nodes, whose extended labels are 3
  210. for pattern in patterns['3star']:
  211. if pattern[0] not in rootlist: # prevent to count the same pattern twice from each of the two root nodes
  212. rootlist.append(pattern[0])
  213. for i in range(1, len(pattern)):
  214. if G.degree(pattern[i]) >= 3:
  215. rootlist.append(pattern[i])
  216. pattern_t = pattern[:]
  217. pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i]
  218. for neighborx1 in G[pattern[i]]:
  219. if neighborx1 != pattern[0]:
  220. for neighborx2 in G[pattern[i]]:
  221. if neighborx1 > neighborx2 and neighborx2 != pattern[0]:
  222. new_pattern = pattern_t + [neighborx1] + [neighborx2]
  223. # new_patterns = [ pattern + [neighborx1] + [neighborx2] for neighborx1 in G[pattern[i]] if neighborx1 != pattern[0] for neighborx2 in G[pattern[i]] if (neighborx1 > neighborx2 and neighborx2 != pattern[0]) ]
  224. patterns['12'].append(new_pattern)
  225. canonkey['c'] = int(len(patterns['12']) / 2)
  226. # pattern 9
  227. patterns['9'] = [] # the 2nd line of Table 1 in Ref [1]
  228. for pattern in patterns['3star']:
  229. for pairs in [ [neighbor1, neighbor2] for neighbor1 in G[pattern[0]] if G.degree(neighbor1) >= 2 \
  230. for neighbor2 in G[pattern[0]] if G.degree(neighbor2) >= 2 if neighbor1 > neighbor2 ]:
  231. pattern_t = pattern[:]
  232. # move nodes with extended labels 4 to specific position to correspond to their children
  233. pattern_t[pattern_t.index(pairs[0])], pattern_t[2] = pattern_t[2], pattern_t[pattern_t.index(pairs[0])]
  234. pattern_t[pattern_t.index(pairs[1])], pattern_t[3] = pattern_t[3], pattern_t[pattern_t.index(pairs[1])]
  235. for neighborx1 in G[pairs[0]]:
  236. if neighborx1 != pattern[0]:
  237. for neighborx2 in G[pairs[1]]:
  238. if neighborx2 != pattern[0]:
  239. new_pattern = pattern_t + [neighborx1] + [neighborx2]
  240. patterns['9'].append(new_pattern)
  241. canonkey['9'] = len(patterns['9'])
  242. # pattern 10
  243. patterns['10'] = [] # the 3rd line of Table 1 in Ref [1]
  244. for pattern in patterns['3star']:
  245. for i in range(1, len(pattern)):
  246. if G.degree(pattern[i]) >= 2:
  247. for neighborx in G[pattern[i]]:
  248. if neighborx != pattern[0] and G.degree(neighborx) >= 2:
  249. pattern_t = pattern[:]
  250. pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i]
  251. new_patterns = [ pattern_t + [neighborx] + [neighborxx] for neighborxx in G[neighborx] if neighborxx != pattern[i] ]
  252. patterns['10'].extend(new_patterns)
  253. canonkey['a'] = len(patterns['10'])
  254. ### labeling information ###
  255. ### In this section, a list of canonical keys is generated for every
  256. ### pattern obtained in the structural analysis section above, which is a
  257. ### string corresponding to a unique treelet. A dictionary is built to keep
  258. ### track of the amount of every treelet.
  259. if labeled == True:
  260. canonkey_l = {} # canonical key, a dictionary which keeps track of amount of every treelet.
  261. # linear patterns
  262. canonkey_t = Counter(list(nx.get_node_attributes(G, node_label).values()))
  263. for key in canonkey_t:
  264. canonkey_l[('0', key)] = canonkey_t[key]
  265. for i in range(1, 6): # for i in range(1, 6):
  266. treelet = []
  267. for pattern in patterns[str(i)]:
  268. canonlist = list(chain.from_iterable((G.nodes[node][node_label], \
  269. G[node][pattern[idx+1]][edge_label]) for idx, node in enumerate(pattern[:-1])))
  270. canonlist.append(G.nodes[pattern[-1]][node_label])
  271. canonkey_t = canonlist if canonlist < canonlist[::-1] else canonlist[::-1]
  272. treelet.append(tuple([str(i)] + canonkey_t))
  273. canonkey_l.update(Counter(treelet))
  274. # n-star patterns
  275. for i in range(3, 6):
  276. treelet = []
  277. for pattern in patterns[str(i) + 'star']:
  278. canonlist = [tuple((G.nodes[leaf][node_label],
  279. G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:]]
  280. canonlist.sort()
  281. canonlist = list(chain.from_iterable(canonlist))
  282. canonkey_t = tuple(['d' if i == 5 else str(i * 2)] +
  283. [G.nodes[pattern[0]][node_label]] + canonlist)
  284. treelet.append(canonkey_t)
  285. canonkey_l.update(Counter(treelet))
  286. # pattern 7
  287. treelet = []
  288. for pattern in patterns['7']:
  289. canonlist = [tuple((G.nodes[leaf][node_label],
  290. G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:3]]
  291. canonlist.sort()
  292. canonlist = list(chain.from_iterable(canonlist))
  293. canonkey_t = tuple(['7'] + [G.nodes[pattern[0]][node_label]] + canonlist
  294. + [G.nodes[pattern[3]][node_label]]
  295. + [G[pattern[3]][pattern[0]][edge_label]]
  296. + [G.nodes[pattern[4]][node_label]]
  297. + [G[pattern[4]][pattern[3]][edge_label]])
  298. treelet.append(canonkey_t)
  299. canonkey_l.update(Counter(treelet))
  300. # pattern 11
  301. treelet = []
  302. for pattern in patterns['11']:
  303. canonlist = [tuple((G.nodes[leaf][node_label],
  304. G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:4]]
  305. canonlist.sort()
  306. canonlist = list(chain.from_iterable(canonlist))
  307. canonkey_t = tuple(['b'] + [G.nodes[pattern[0]][node_label]] + canonlist
  308. + [G.nodes[pattern[4]][node_label]]
  309. + [G[pattern[4]][pattern[0]][edge_label]]
  310. + [G.nodes[pattern[5]][node_label]]
  311. + [G[pattern[5]][pattern[4]][edge_label]])
  312. treelet.append(canonkey_t)
  313. canonkey_l.update(Counter(treelet))
  314. # pattern 10
  315. treelet = []
  316. for pattern in patterns['10']:
  317. canonkey4 = [G.nodes[pattern[5]][node_label], G[pattern[5]][pattern[4]][edge_label]]
  318. canonlist = [tuple((G.nodes[leaf][node_label],
  319. G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:3]]
  320. canonlist.sort()
  321. canonkey0 = list(chain.from_iterable(canonlist))
  322. canonkey_t = tuple(['a'] + [G.nodes[pattern[3]][node_label]]
  323. + [G.nodes[pattern[4]][node_label]]
  324. + [G[pattern[4]][pattern[3]][edge_label]]
  325. + [G.nodes[pattern[0]][node_label]]
  326. + [G[pattern[0]][pattern[3]][edge_label]]
  327. + canonkey4 + canonkey0)
  328. treelet.append(canonkey_t)
  329. canonkey_l.update(Counter(treelet))
  330. # pattern 12
  331. treelet = []
  332. for pattern in patterns['12']:
  333. canonlist0 = [tuple((G.nodes[leaf][node_label],
  334. G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:3]]
  335. canonlist0.sort()
  336. canonlist0 = list(chain.from_iterable(canonlist0))
  337. canonlist3 = [tuple((G.nodes[leaf][node_label],
  338. G[leaf][pattern[3]][edge_label])) for leaf in pattern[4:6]]
  339. canonlist3.sort()
  340. canonlist3 = list(chain.from_iterable(canonlist3))
  341. # 2 possible key can be generated from 2 nodes with extended label 3,
  342. # select the one with lower lexicographic order.
  343. canonkey_t1 = tuple(['c'] + [G.nodes[pattern[0]][node_label]] + canonlist0
  344. + [G.nodes[pattern[3]][node_label]]
  345. + [G[pattern[3]][pattern[0]][edge_label]]
  346. + canonlist3)
  347. canonkey_t2 = tuple(['c'] + [G.nodes[pattern[3]][node_label]] + canonlist3
  348. + [G.nodes[pattern[0]][node_label]]
  349. + [G[pattern[0]][pattern[3]][edge_label]]
  350. + canonlist0)
  351. treelet.append(canonkey_t1 if canonkey_t1 < canonkey_t2 else canonkey_t2)
  352. canonkey_l.update(Counter(treelet))
  353. # pattern 9
  354. treelet = []
  355. for pattern in patterns['9']:
  356. canonkey2 = [G.nodes[pattern[4]][node_label], G[pattern[4]][pattern[2]][edge_label]]
  357. canonkey3 = [G.nodes[pattern[5]][node_label], G[pattern[5]][pattern[3]][edge_label]]
  358. prekey2 = [G.nodes[pattern[2]][node_label], G[pattern[2]][pattern[0]][edge_label]]
  359. prekey3 = [G.nodes[pattern[3]][node_label], G[pattern[3]][pattern[0]][edge_label]]
  360. if prekey2 + canonkey2 < prekey3 + canonkey3:
  361. canonkey_t = [G.nodes[pattern[1]][node_label]] \
  362. + [G[pattern[1]][pattern[0]][edge_label]] \
  363. + prekey2 + prekey3 + canonkey2 + canonkey3
  364. else:
  365. canonkey_t = [G.nodes[pattern[1]][node_label]] \
  366. + [G[pattern[1]][pattern[0]][edge_label]] \
  367. + prekey3 + prekey2 + canonkey3 + canonkey2
  368. treelet.append(tuple(['9'] + [G.nodes[pattern[0]][node_label]] + canonkey_t))
  369. canonkey_l.update(Counter(treelet))
  370. return canonkey_l
  371. return canonkey
  372. def wrapper_get_canonkeys(node_label, edge_label, labeled, is_directed, itr_item):
  373. g = itr_item[0]
  374. i = itr_item[1]
  375. return i, get_canonkeys(g, node_label, edge_label, labeled, is_directed)
  376. def find_paths(G, source_node, length):
  377. """Find all paths with a certain length those start from a source node.
  378. A recursive depth first search is applied.
  379. Parameters
  380. ----------
  381. G : NetworkX graphs
  382. The graph in which paths are searched.
  383. source_node : integer
  384. The number of the node from where all paths start.
  385. length : integer
  386. The length of paths.
  387. Return
  388. ------
  389. path : list of list
  390. List of paths retrieved, where each path is represented by a list of nodes.
  391. """
  392. if length == 0:
  393. return [[source_node]]
  394. path = [[source_node] + path for neighbor in G[source_node] \
  395. for path in find_paths(G, neighbor, length - 1) if source_node not in path]
  396. return path
  397. def find_all_paths(G, length, is_directed):
  398. """Find all paths with a certain length in a graph. A recursive depth first
  399. search is applied.
  400. Parameters
  401. ----------
  402. G : NetworkX graphs
  403. The graph in which paths are searched.
  404. length : integer
  405. The length of paths.
  406. Return
  407. ------
  408. path : list of list
  409. List of paths retrieved, where each path is represented by a list of nodes.
  410. """
  411. all_paths = []
  412. for node in G:
  413. all_paths.extend(find_paths(G, node, length))
  414. if not is_directed:
  415. # For each path, two presentations are retrieved from its two extremities.
  416. # Remove one of them.
  417. all_paths_r = [path[::-1] for path in all_paths]
  418. for idx, path in enumerate(all_paths[:-1]):
  419. for path2 in all_paths_r[idx+1::]:
  420. if path == path2:
  421. all_paths[idx] = []
  422. break
  423. all_paths = list(filter(lambda a: a != [], all_paths))
  424. return all_paths

A Python package for graph kernels, graph edit distances and graph pre-image problem.