You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

xp_median_preimage.py 88 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Tue Jan 14 15:39:29 2020
  5. @author: ljia
  6. """
  7. import multiprocessing
  8. import functools
  9. import sys
  10. import os
  11. from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
  12. from gklearn.preimage.utils import generate_median_preimages_by_class
  13. from gklearn.utils import compute_gram_matrices_by_class
  14. def xp_median_preimage_14_1():
  15. """xp 14_1: DD, PathUpToH, using CONSTANT.
  16. """
  17. # set parameters.
  18. ds_name = 'DD' #
  19. mpg_options = {'fit_method': 'k-graphs',
  20. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  21. 'ds_name': ds_name,
  22. 'parallel': True, # False
  23. 'time_limit_in_sec': 0,
  24. 'max_itrs': 100, #
  25. 'max_itrs_without_update': 3,
  26. 'epsilon_residual': 0.01,
  27. 'epsilon_ec': 0.1,
  28. 'verbose': 2}
  29. kernel_options = {'name': 'PathUpToH',
  30. 'depth': 2, #
  31. 'k_func': 'MinMax', #
  32. 'compute_method': 'trie',
  33. 'parallel': 'imap_unordered',
  34. # 'parallel': None,
  35. 'n_jobs': multiprocessing.cpu_count(),
  36. 'normalize': True,
  37. 'verbose': 2}
  38. ged_options = {'method': 'IPFP',
  39. 'initialization_method': 'RANDOM', # 'NODE'
  40. 'initial_solutions': 10, # 1
  41. 'edit_cost': 'CONSTANT', #
  42. 'attr_distance': 'euclidean',
  43. 'ratio_runs_from_initial_solutions': 1,
  44. 'threads': multiprocessing.cpu_count(),
  45. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  46. mge_options = {'init_type': 'MEDOID',
  47. 'random_inits': 10,
  48. 'time_limit': 0,
  49. 'verbose': 2,
  50. 'update_order': False,
  51. 'refine': False}
  52. save_results = True
  53. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  54. irrelevant_labels = None #
  55. edge_required = False #
  56. if not os.path.exists(dir_save):
  57. os.makedirs(dir_save)
  58. file_output = open(dir_save + 'output.txt', 'a')
  59. sys.stdout = file_output
  60. # # compute gram matrices for each class a priori.
  61. # print('Compute gram matrices for each class a priori.')
  62. # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=save_results, dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  63. # print settings.
  64. print('parameters:')
  65. print('dataset name:', ds_name)
  66. print('mpg_options:', mpg_options)
  67. print('kernel_options:', kernel_options)
  68. print('ged_options:', ged_options)
  69. print('mge_options:', mge_options)
  70. print('save_results:', save_results)
  71. print('irrelevant_labels:', irrelevant_labels)
  72. print()
  73. # generate preimages.
  74. for fit_method in ['k-graphs'] + ['random'] * 5:
  75. print('\n-------------------------------------')
  76. print('fit method:', fit_method, '\n')
  77. mpg_options['fit_method'] = fit_method
  78. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  79. def xp_median_preimage_13_1():
  80. """xp 13_1: PAH, StructuralSP, using NON_SYMBOLIC.
  81. """
  82. # set parameters.
  83. ds_name = 'PAH' #
  84. mpg_options = {'fit_method': 'k-graphs',
  85. 'init_ecc': [3, 3, 1, 3, 3, 0], #
  86. 'ds_name': ds_name,
  87. 'parallel': True, # False
  88. 'time_limit_in_sec': 0,
  89. 'max_itrs': 100, #
  90. 'max_itrs_without_update': 3,
  91. 'epsilon_residual': 0.01,
  92. 'epsilon_ec': 0.1,
  93. 'verbose': 2}
  94. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  95. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  96. kernel_options = {'name': 'StructuralSP',
  97. 'edge_weight': None,
  98. 'node_kernels': sub_kernels,
  99. 'edge_kernels': sub_kernels,
  100. 'compute_method': 'naive',
  101. 'parallel': 'imap_unordered',
  102. # 'parallel': None,
  103. 'n_jobs': multiprocessing.cpu_count(),
  104. 'normalize': True,
  105. 'verbose': 2}
  106. ged_options = {'method': 'IPFP',
  107. 'initialization_method': 'RANDOM', # 'NODE'
  108. 'initial_solutions': 10, # 1
  109. 'edit_cost': 'NON_SYMBOLIC', #
  110. 'attr_distance': 'euclidean',
  111. 'ratio_runs_from_initial_solutions': 1,
  112. 'threads': multiprocessing.cpu_count(),
  113. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  114. mge_options = {'init_type': 'MEDOID',
  115. 'random_inits': 10,
  116. 'time_limit': 600,
  117. 'verbose': 2,
  118. 'update_order': False,
  119. 'refine': False}
  120. save_results = True
  121. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  122. irrelevant_labels = None #
  123. edge_required = False #
  124. # print settings.
  125. file_output = open(dir_save + 'output.txt', 'a')
  126. sys.stdout = file_output
  127. print('parameters:')
  128. print('dataset name:', ds_name)
  129. print('mpg_options:', mpg_options)
  130. print('kernel_options:', kernel_options)
  131. print('ged_options:', ged_options)
  132. print('mge_options:', mge_options)
  133. print('save_results:', save_results)
  134. print('irrelevant_labels:', irrelevant_labels)
  135. print()
  136. # generate preimages.
  137. for fit_method in ['k-graphs'] + ['random'] * 5:
  138. print('\n-------------------------------------')
  139. print('fit method:', fit_method, '\n')
  140. mpg_options['fit_method'] = fit_method
  141. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  142. def xp_median_preimage_13_2():
  143. """xp 13_2: PAH, ShortestPath, using NON_SYMBOLIC.
  144. """
  145. # set parameters.
  146. ds_name = 'PAH' #
  147. mpg_options = {'fit_method': 'k-graphs',
  148. 'init_ecc': [3, 3, 1, 3, 3, 0], #
  149. 'ds_name': ds_name,
  150. 'parallel': True, # False
  151. 'time_limit_in_sec': 0,
  152. 'max_itrs': 100,
  153. 'max_itrs_without_update': 3,
  154. 'epsilon_residual': 0.01,
  155. 'epsilon_ec': 0.1,
  156. 'verbose': 2}
  157. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  158. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  159. kernel_options = {'name': 'ShortestPath',
  160. 'edge_weight': None,
  161. 'node_kernels': sub_kernels,
  162. 'parallel': 'imap_unordered',
  163. # 'parallel': None,
  164. 'n_jobs': multiprocessing.cpu_count(),
  165. 'normalize': True,
  166. 'verbose': 2}
  167. ged_options = {'method': 'IPFP',
  168. 'initialization_method': 'RANDOM', # 'NODE'
  169. 'initial_solutions': 10, # 1
  170. 'edit_cost': 'NON_SYMBOLIC', #
  171. 'attr_distance': 'euclidean',
  172. 'ratio_runs_from_initial_solutions': 1,
  173. 'threads': multiprocessing.cpu_count(),
  174. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  175. mge_options = {'init_type': 'MEDOID',
  176. 'random_inits': 10,
  177. 'time_limit': 600,
  178. 'verbose': 2,
  179. 'update_order': False,
  180. 'refine': False}
  181. save_results = True
  182. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' #
  183. irrelevant_labels = None #
  184. edge_required = True #
  185. # print settings.
  186. file_output = open(dir_save + 'output.txt', 'a')
  187. sys.stdout = file_output
  188. print('parameters:')
  189. print('dataset name:', ds_name)
  190. print('mpg_options:', mpg_options)
  191. print('kernel_options:', kernel_options)
  192. print('ged_options:', ged_options)
  193. print('mge_options:', mge_options)
  194. print('save_results:', save_results)
  195. print('irrelevant_labels:', irrelevant_labels)
  196. print()
  197. # generate preimages.
  198. for fit_method in ['k-graphs'] + ['random'] * 5: #
  199. print('\n-------------------------------------')
  200. print('fit method:', fit_method, '\n')
  201. mpg_options['fit_method'] = fit_method
  202. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  203. def xp_median_preimage_12_1():
  204. """xp 12_1: PAH, StructuralSP, using NON_SYMBOLIC, unlabeled.
  205. """
  206. # set parameters.
  207. ds_name = 'PAH' #
  208. mpg_options = {'fit_method': 'k-graphs',
  209. 'init_ecc': [4, 4, 0, 1, 1, 0], #
  210. 'ds_name': ds_name,
  211. 'parallel': True, # False
  212. 'time_limit_in_sec': 0,
  213. 'max_itrs': 100, #
  214. 'max_itrs_without_update': 3,
  215. 'epsilon_residual': 0.01,
  216. 'epsilon_ec': 0.1,
  217. 'verbose': 2}
  218. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  219. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  220. kernel_options = {'name': 'StructuralSP',
  221. 'edge_weight': None,
  222. 'node_kernels': sub_kernels,
  223. 'edge_kernels': sub_kernels,
  224. 'compute_method': 'naive',
  225. 'parallel': 'imap_unordered',
  226. # 'parallel': None,
  227. 'n_jobs': multiprocessing.cpu_count(),
  228. 'normalize': True,
  229. 'verbose': 2}
  230. ged_options = {'method': 'IPFP',
  231. 'initialization_method': 'RANDOM', # 'NODE'
  232. 'initial_solutions': 10, # 1
  233. 'edit_cost': 'NON_SYMBOLIC', #
  234. 'attr_distance': 'euclidean',
  235. 'ratio_runs_from_initial_solutions': 1,
  236. 'threads': multiprocessing.cpu_count(),
  237. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  238. mge_options = {'init_type': 'MEDOID',
  239. 'random_inits': 10,
  240. 'time_limit': 600,
  241. 'verbose': 2,
  242. 'update_order': False,
  243. 'refine': False}
  244. save_results = True
  245. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
  246. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  247. edge_required = False #
  248. # print settings.
  249. file_output = open(dir_save + 'output.txt', 'a')
  250. sys.stdout = file_output
  251. print('parameters:')
  252. print('dataset name:', ds_name)
  253. print('mpg_options:', mpg_options)
  254. print('kernel_options:', kernel_options)
  255. print('ged_options:', ged_options)
  256. print('mge_options:', mge_options)
  257. print('save_results:', save_results)
  258. print('irrelevant_labels:', irrelevant_labels)
  259. print()
  260. # generate preimages.
  261. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  262. print('\n-------------------------------------')
  263. print('fit method:', fit_method, '\n')
  264. mpg_options['fit_method'] = fit_method
  265. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  266. def xp_median_preimage_12_2():
  267. """xp 12_2: PAH, PathUpToH, using CONSTANT, unlabeled.
  268. """
  269. # set parameters.
  270. ds_name = 'PAH' #
  271. mpg_options = {'fit_method': 'k-graphs',
  272. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  273. 'ds_name': ds_name,
  274. 'parallel': True, # False
  275. 'time_limit_in_sec': 0,
  276. 'max_itrs': 100, #
  277. 'max_itrs_without_update': 3,
  278. 'epsilon_residual': 0.01,
  279. 'epsilon_ec': 0.1,
  280. 'verbose': 2}
  281. kernel_options = {'name': 'PathUpToH',
  282. 'depth': 1, #
  283. 'k_func': 'MinMax', #
  284. 'compute_method': 'trie',
  285. 'parallel': 'imap_unordered',
  286. # 'parallel': None,
  287. 'n_jobs': multiprocessing.cpu_count(),
  288. 'normalize': True,
  289. 'verbose': 2}
  290. ged_options = {'method': 'IPFP',
  291. 'initialization_method': 'RANDOM', # 'NODE'
  292. 'initial_solutions': 10, # 1
  293. 'edit_cost': 'CONSTANT', #
  294. 'attr_distance': 'euclidean',
  295. 'ratio_runs_from_initial_solutions': 1,
  296. 'threads': multiprocessing.cpu_count(),
  297. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  298. mge_options = {'init_type': 'MEDOID',
  299. 'random_inits': 10,
  300. 'time_limit': 600,
  301. 'verbose': 2,
  302. 'update_order': False,
  303. 'refine': False}
  304. save_results = True
  305. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
  306. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  307. edge_required = False #
  308. # print settings.
  309. file_output = open(dir_save + 'output.txt', 'a')
  310. sys.stdout = file_output
  311. print('parameters:')
  312. print('dataset name:', ds_name)
  313. print('mpg_options:', mpg_options)
  314. print('kernel_options:', kernel_options)
  315. print('ged_options:', ged_options)
  316. print('mge_options:', mge_options)
  317. print('save_results:', save_results)
  318. print('irrelevant_labels:', irrelevant_labels)
  319. print()
  320. # generate preimages.
  321. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  322. print('\n-------------------------------------')
  323. print('fit method:', fit_method, '\n')
  324. mpg_options['fit_method'] = fit_method
  325. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  326. def xp_median_preimage_12_3():
  327. """xp 12_3: PAH, Treelet, using CONSTANT, unlabeled.
  328. """
  329. from gklearn.utils.kernels import gaussiankernel
  330. # set parameters.
  331. ds_name = 'PAH' #
  332. mpg_options = {'fit_method': 'k-graphs',
  333. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  334. 'ds_name': ds_name,
  335. 'parallel': True, # False
  336. 'time_limit_in_sec': 0,
  337. 'max_itrs': 100, #
  338. 'max_itrs_without_update': 3,
  339. 'epsilon_residual': 0.01,
  340. 'epsilon_ec': 0.1,
  341. 'verbose': 2}
  342. pkernel = functools.partial(gaussiankernel, gamma=None) # @todo
  343. kernel_options = {'name': 'Treelet', #
  344. 'sub_kernel': pkernel,
  345. 'parallel': 'imap_unordered',
  346. # 'parallel': None,
  347. 'n_jobs': multiprocessing.cpu_count(),
  348. 'normalize': True,
  349. 'verbose': 2}
  350. ged_options = {'method': 'IPFP',
  351. 'initialization_method': 'RANDOM', # 'NODE'
  352. 'initial_solutions': 10, # 1
  353. 'edit_cost': 'CONSTANT', #
  354. 'attr_distance': 'euclidean',
  355. 'ratio_runs_from_initial_solutions': 1,
  356. 'threads': multiprocessing.cpu_count(),
  357. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  358. mge_options = {'init_type': 'MEDOID',
  359. 'random_inits': 10,
  360. 'time_limit': 600,
  361. 'verbose': 2,
  362. 'update_order': False,
  363. 'refine': False}
  364. save_results = True
  365. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
  366. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  367. edge_required = False #
  368. # print settings.
  369. if not os.path.exists(dir_save):
  370. os.makedirs(dir_save)
  371. file_output = open(dir_save + 'output.txt', 'a')
  372. sys.stdout = file_output
  373. print('parameters:')
  374. print('dataset name:', ds_name)
  375. print('mpg_options:', mpg_options)
  376. print('kernel_options:', kernel_options)
  377. print('ged_options:', ged_options)
  378. print('mge_options:', mge_options)
  379. print('save_results:', save_results)
  380. print('irrelevant_labels:', irrelevant_labels)
  381. print()
  382. # generate preimages.
  383. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  384. print('\n-------------------------------------')
  385. print('fit method:', fit_method, '\n')
  386. mpg_options['fit_method'] = fit_method
  387. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  388. def xp_median_preimage_12_4():
  389. """xp 12_4: PAH, WeisfeilerLehman, using CONSTANT, unlabeled.
  390. """
  391. # set parameters.
  392. ds_name = 'PAH' #
  393. mpg_options = {'fit_method': 'k-graphs',
  394. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  395. 'ds_name': ds_name,
  396. 'parallel': True, # False
  397. 'time_limit_in_sec': 0,
  398. 'max_itrs': 100, #
  399. 'max_itrs_without_update': 3,
  400. 'epsilon_residual': 0.01,
  401. 'epsilon_ec': 0.1,
  402. 'verbose': 2}
  403. kernel_options = {'name': 'WeisfeilerLehman',
  404. 'height': 14,
  405. 'base_kernel': 'subtree',
  406. 'parallel': 'imap_unordered',
  407. # 'parallel': None,
  408. 'n_jobs': multiprocessing.cpu_count(),
  409. 'normalize': True,
  410. 'verbose': 2}
  411. ged_options = {'method': 'IPFP',
  412. 'initialization_method': 'RANDOM', # 'NODE'
  413. 'initial_solutions': 10, # 1
  414. 'edit_cost': 'CONSTANT', #
  415. 'attr_distance': 'euclidean',
  416. 'ratio_runs_from_initial_solutions': 1,
  417. 'threads': multiprocessing.cpu_count(),
  418. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  419. mge_options = {'init_type': 'MEDOID',
  420. 'random_inits': 10,
  421. 'time_limit': 600,
  422. 'verbose': 2,
  423. 'update_order': False,
  424. 'refine': False}
  425. save_results = True
  426. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
  427. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  428. edge_required = False #
  429. # print settings.
  430. file_output = open(dir_save + 'output.txt', 'a')
  431. sys.stdout = file_output
  432. print('parameters:')
  433. print('dataset name:', ds_name)
  434. print('mpg_options:', mpg_options)
  435. print('kernel_options:', kernel_options)
  436. print('ged_options:', ged_options)
  437. print('mge_options:', mge_options)
  438. print('save_results:', save_results)
  439. print('irrelevant_labels:', irrelevant_labels)
  440. print()
  441. # # compute gram matrices for each class a priori.
  442. # print('Compute gram matrices for each class a priori.')
  443. # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
  444. # generate preimages.
  445. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  446. print('\n-------------------------------------')
  447. print('fit method:', fit_method, '\n')
  448. mpg_options['fit_method'] = fit_method
  449. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  450. def xp_median_preimage_12_5():
  451. """xp 12_5: PAH, ShortestPath, using NON_SYMBOLIC, unlabeled.
  452. """
  453. # set parameters.
  454. ds_name = 'PAH' #
  455. mpg_options = {'fit_method': 'k-graphs',
  456. 'init_ecc': [4, 4, 0, 1, 1, 0], #
  457. 'ds_name': ds_name,
  458. 'parallel': True, # False
  459. 'time_limit_in_sec': 0,
  460. 'max_itrs': 100,
  461. 'max_itrs_without_update': 3,
  462. 'epsilon_residual': 0.01,
  463. 'epsilon_ec': 0.1,
  464. 'verbose': 2}
  465. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  466. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  467. kernel_options = {'name': 'ShortestPath',
  468. 'edge_weight': None,
  469. 'node_kernels': sub_kernels,
  470. 'parallel': 'imap_unordered',
  471. # 'parallel': None,
  472. 'n_jobs': multiprocessing.cpu_count(),
  473. 'normalize': True,
  474. 'verbose': 2}
  475. ged_options = {'method': 'IPFP',
  476. 'initialization_method': 'RANDOM', # 'NODE'
  477. 'initial_solutions': 10, # 1
  478. 'edit_cost': 'NON_SYMBOLIC', #
  479. 'attr_distance': 'euclidean',
  480. 'ratio_runs_from_initial_solutions': 1,
  481. 'threads': multiprocessing.cpu_count(),
  482. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  483. mge_options = {'init_type': 'MEDOID',
  484. 'random_inits': 10,
  485. 'time_limit': 600,
  486. 'verbose': 2,
  487. 'update_order': False,
  488. 'refine': False}
  489. save_results = True
  490. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/' #
  491. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  492. edge_required = True #
  493. # print settings.
  494. file_output = open(dir_save + 'output.txt', 'a')
  495. sys.stdout = file_output
  496. print('parameters:')
  497. print('dataset name:', ds_name)
  498. print('mpg_options:', mpg_options)
  499. print('kernel_options:', kernel_options)
  500. print('ged_options:', ged_options)
  501. print('mge_options:', mge_options)
  502. print('save_results:', save_results)
  503. print('irrelevant_labels:', irrelevant_labels)
  504. print()
  505. # generate preimages.
  506. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: #
  507. print('\n-------------------------------------')
  508. print('fit method:', fit_method, '\n')
  509. mpg_options['fit_method'] = fit_method
  510. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  511. def xp_median_preimage_9_1():
  512. """xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
  513. """
  514. # set parameters.
  515. ds_name = 'MAO' #
  516. mpg_options = {'fit_method': 'k-graphs',
  517. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  518. 'ds_name': ds_name,
  519. 'parallel': True, # False
  520. 'time_limit_in_sec': 0,
  521. 'max_itrs': 100, #
  522. 'max_itrs_without_update': 3,
  523. 'epsilon_residual': 0.01,
  524. 'epsilon_ec': 0.1,
  525. 'verbose': 2}
  526. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  527. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  528. kernel_options = {'name': 'StructuralSP',
  529. 'edge_weight': None,
  530. 'node_kernels': sub_kernels,
  531. 'edge_kernels': sub_kernels,
  532. 'compute_method': 'naive',
  533. 'parallel': 'imap_unordered',
  534. # 'parallel': None,
  535. 'n_jobs': multiprocessing.cpu_count(),
  536. 'normalize': True,
  537. 'verbose': 2}
  538. ged_options = {'method': 'IPFP',
  539. 'initialization_method': 'RANDOM', # 'NODE'
  540. 'initial_solutions': 10, # 1
  541. 'edit_cost': 'CONSTANT', #
  542. 'attr_distance': 'euclidean',
  543. 'ratio_runs_from_initial_solutions': 1,
  544. 'threads': multiprocessing.cpu_count(),
  545. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  546. mge_options = {'init_type': 'MEDOID',
  547. 'random_inits': 10,
  548. 'time_limit': 600,
  549. 'verbose': 2,
  550. 'update_order': False,
  551. 'refine': False}
  552. save_results = True
  553. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
  554. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  555. edge_required = False #
  556. # print settings.
  557. file_output = open(dir_save + 'output.txt', 'a')
  558. sys.stdout = file_output
  559. print('parameters:')
  560. print('dataset name:', ds_name)
  561. print('mpg_options:', mpg_options)
  562. print('kernel_options:', kernel_options)
  563. print('ged_options:', ged_options)
  564. print('mge_options:', mge_options)
  565. print('save_results:', save_results)
  566. print('irrelevant_labels:', irrelevant_labels)
  567. print()
  568. # generate preimages.
  569. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  570. print('\n-------------------------------------')
  571. print('fit method:', fit_method, '\n')
  572. mpg_options['fit_method'] = fit_method
  573. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  574. def xp_median_preimage_9_2():
  575. """xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
  576. """
  577. # set parameters.
  578. ds_name = 'MAO' #
  579. mpg_options = {'fit_method': 'k-graphs',
  580. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  581. 'ds_name': ds_name,
  582. 'parallel': True, # False
  583. 'time_limit_in_sec': 0,
  584. 'max_itrs': 100, #
  585. 'max_itrs_without_update': 3,
  586. 'epsilon_residual': 0.01,
  587. 'epsilon_ec': 0.1,
  588. 'verbose': 2}
  589. kernel_options = {'name': 'PathUpToH',
  590. 'depth': 9, #
  591. 'k_func': 'MinMax', #
  592. 'compute_method': 'trie',
  593. 'parallel': 'imap_unordered',
  594. # 'parallel': None,
  595. 'n_jobs': multiprocessing.cpu_count(),
  596. 'normalize': True,
  597. 'verbose': 2}
  598. ged_options = {'method': 'IPFP',
  599. 'initialization_method': 'RANDOM', # 'NODE'
  600. 'initial_solutions': 10, # 1
  601. 'edit_cost': 'CONSTANT', #
  602. 'attr_distance': 'euclidean',
  603. 'ratio_runs_from_initial_solutions': 1,
  604. 'threads': multiprocessing.cpu_count(),
  605. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  606. mge_options = {'init_type': 'MEDOID',
  607. 'random_inits': 10,
  608. 'time_limit': 600,
  609. 'verbose': 2,
  610. 'update_order': False,
  611. 'refine': False}
  612. save_results = True
  613. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
  614. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  615. edge_required = False #
  616. # print settings.
  617. file_output = open(dir_save + 'output.txt', 'a')
  618. sys.stdout = file_output
  619. print('parameters:')
  620. print('dataset name:', ds_name)
  621. print('mpg_options:', mpg_options)
  622. print('kernel_options:', kernel_options)
  623. print('ged_options:', ged_options)
  624. print('mge_options:', mge_options)
  625. print('save_results:', save_results)
  626. print('irrelevant_labels:', irrelevant_labels)
  627. print()
  628. # generate preimages.
  629. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  630. print('\n-------------------------------------')
  631. print('fit method:', fit_method, '\n')
  632. mpg_options['fit_method'] = fit_method
  633. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  634. def xp_median_preimage_9_3():
  635. """xp 9_3: MAO, Treelet, using CONSTANT, symbolic only.
  636. """
  637. from gklearn.utils.kernels import polynomialkernel
  638. # set parameters.
  639. ds_name = 'MAO' #
  640. mpg_options = {'fit_method': 'k-graphs',
  641. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  642. 'ds_name': ds_name,
  643. 'parallel': True, # False
  644. 'time_limit_in_sec': 0,
  645. 'max_itrs': 100, #
  646. 'max_itrs_without_update': 3,
  647. 'epsilon_residual': 0.01,
  648. 'epsilon_ec': 0.1,
  649. 'verbose': 2}
  650. pkernel = functools.partial(polynomialkernel, d=4, c=1e+7)
  651. kernel_options = {'name': 'Treelet', #
  652. 'sub_kernel': pkernel,
  653. 'parallel': 'imap_unordered',
  654. # 'parallel': None,
  655. 'n_jobs': multiprocessing.cpu_count(),
  656. 'normalize': True,
  657. 'verbose': 2}
  658. ged_options = {'method': 'IPFP',
  659. 'initialization_method': 'RANDOM', # 'NODE'
  660. 'initial_solutions': 10, # 1
  661. 'edit_cost': 'CONSTANT', #
  662. 'attr_distance': 'euclidean',
  663. 'ratio_runs_from_initial_solutions': 1,
  664. 'threads': multiprocessing.cpu_count(),
  665. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  666. mge_options = {'init_type': 'MEDOID',
  667. 'random_inits': 10,
  668. 'time_limit': 600,
  669. 'verbose': 2,
  670. 'update_order': False,
  671. 'refine': False}
  672. save_results = True
  673. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
  674. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  675. edge_required = False #
  676. # print settings.
  677. file_output = open(dir_save + 'output.txt', 'a')
  678. sys.stdout = file_output
  679. print('parameters:')
  680. print('dataset name:', ds_name)
  681. print('mpg_options:', mpg_options)
  682. print('kernel_options:', kernel_options)
  683. print('ged_options:', ged_options)
  684. print('mge_options:', mge_options)
  685. print('save_results:', save_results)
  686. print('irrelevant_labels:', irrelevant_labels)
  687. print()
  688. # generate preimages.
  689. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  690. print('\n-------------------------------------')
  691. print('fit method:', fit_method, '\n')
  692. mpg_options['fit_method'] = fit_method
  693. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  694. def xp_median_preimage_9_4():
  695. """xp 9_4: MAO, WeisfeilerLehman, using CONSTANT, symbolic only.
  696. """
  697. # set parameters.
  698. ds_name = 'MAO' #
  699. mpg_options = {'fit_method': 'k-graphs',
  700. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  701. 'ds_name': ds_name,
  702. 'parallel': True, # False
  703. 'time_limit_in_sec': 0,
  704. 'max_itrs': 100, #
  705. 'max_itrs_without_update': 3,
  706. 'epsilon_residual': 0.01,
  707. 'epsilon_ec': 0.1,
  708. 'verbose': 2}
  709. kernel_options = {'name': 'WeisfeilerLehman',
  710. 'height': 6,
  711. 'base_kernel': 'subtree',
  712. 'parallel': 'imap_unordered',
  713. # 'parallel': None,
  714. 'n_jobs': multiprocessing.cpu_count(),
  715. 'normalize': True,
  716. 'verbose': 2}
  717. ged_options = {'method': 'IPFP',
  718. 'initialization_method': 'RANDOM', # 'NODE'
  719. 'initial_solutions': 10, # 1
  720. 'edit_cost': 'CONSTANT', #
  721. 'attr_distance': 'euclidean',
  722. 'ratio_runs_from_initial_solutions': 1,
  723. 'threads': multiprocessing.cpu_count(),
  724. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  725. mge_options = {'init_type': 'MEDOID',
  726. 'random_inits': 10,
  727. 'time_limit': 600,
  728. 'verbose': 2,
  729. 'update_order': False,
  730. 'refine': False}
  731. save_results = True
  732. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
  733. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  734. edge_required = False #
  735. # print settings.
  736. file_output = open(dir_save + 'output.txt', 'a')
  737. sys.stdout = file_output
  738. print('parameters:')
  739. print('dataset name:', ds_name)
  740. print('mpg_options:', mpg_options)
  741. print('kernel_options:', kernel_options)
  742. print('ged_options:', ged_options)
  743. print('mge_options:', mge_options)
  744. print('save_results:', save_results)
  745. print('irrelevant_labels:', irrelevant_labels)
  746. print()
  747. # # compute gram matrices for each class a priori.
  748. # print('Compute gram matrices for each class a priori.')
  749. # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
  750. # generate preimages.
  751. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  752. print('\n-------------------------------------')
  753. print('fit method:', fit_method, '\n')
  754. mpg_options['fit_method'] = fit_method
  755. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  756. def xp_median_preimage_8_1():
  757. """xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
  758. """
  759. # set parameters.
  760. ds_name = 'Monoterpenoides' #
  761. mpg_options = {'fit_method': 'k-graphs',
  762. 'init_ecc': [3, 3, 1, 3, 3, 1], #
  763. 'ds_name': ds_name,
  764. 'parallel': True, # False
  765. 'time_limit_in_sec': 0,
  766. 'max_itrs': 100, #
  767. 'max_itrs_without_update': 3,
  768. 'epsilon_residual': 0.01,
  769. 'epsilon_ec': 0.1,
  770. 'verbose': 2}
  771. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  772. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  773. kernel_options = {'name': 'StructuralSP',
  774. 'edge_weight': None,
  775. 'node_kernels': sub_kernels,
  776. 'edge_kernels': sub_kernels,
  777. 'compute_method': 'naive',
  778. 'parallel': 'imap_unordered',
  779. # 'parallel': None,
  780. 'n_jobs': multiprocessing.cpu_count(),
  781. 'normalize': True,
  782. 'verbose': 2}
  783. ged_options = {'method': 'IPFP',
  784. 'initialization_method': 'RANDOM', # 'NODE'
  785. 'initial_solutions': 10, # 1
  786. 'edit_cost': 'CONSTANT', #
  787. 'attr_distance': 'euclidean',
  788. 'ratio_runs_from_initial_solutions': 1,
  789. 'threads': multiprocessing.cpu_count(),
  790. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  791. mge_options = {'init_type': 'MEDOID',
  792. 'random_inits': 10,
  793. 'time_limit': 600,
  794. 'verbose': 2,
  795. 'update_order': False,
  796. 'refine': False}
  797. save_results = True
  798. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  799. irrelevant_labels = None #
  800. edge_required = False #
  801. # print settings.
  802. file_output = open(dir_save + 'output.txt', 'a')
  803. sys.stdout = file_output
  804. print('parameters:')
  805. print('dataset name:', ds_name)
  806. print('mpg_options:', mpg_options)
  807. print('kernel_options:', kernel_options)
  808. print('ged_options:', ged_options)
  809. print('mge_options:', mge_options)
  810. print('save_results:', save_results)
  811. print('irrelevant_labels:', irrelevant_labels)
  812. print()
  813. # generate preimages.
  814. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  815. print('\n-------------------------------------')
  816. print('fit method:', fit_method, '\n')
  817. mpg_options['fit_method'] = fit_method
  818. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  819. def xp_median_preimage_8_2():
  820. """xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
  821. """
  822. # set parameters.
  823. ds_name = 'Monoterpenoides' #
  824. mpg_options = {'fit_method': 'k-graphs',
  825. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  826. 'ds_name': ds_name,
  827. 'parallel': True, # False
  828. 'time_limit_in_sec': 0,
  829. 'max_itrs': 100, #
  830. 'max_itrs_without_update': 3,
  831. 'epsilon_residual': 0.01,
  832. 'epsilon_ec': 0.1,
  833. 'verbose': 2}
  834. kernel_options = {'name': 'PathUpToH',
  835. 'depth': 7, #
  836. 'k_func': 'MinMax', #
  837. 'compute_method': 'trie',
  838. 'parallel': 'imap_unordered',
  839. # 'parallel': None,
  840. 'n_jobs': multiprocessing.cpu_count(),
  841. 'normalize': True,
  842. 'verbose': 2}
  843. ged_options = {'method': 'IPFP',
  844. 'initialization_method': 'RANDOM', # 'NODE'
  845. 'initial_solutions': 10, # 1
  846. 'edit_cost': 'CONSTANT', #
  847. 'attr_distance': 'euclidean',
  848. 'ratio_runs_from_initial_solutions': 1,
  849. 'threads': multiprocessing.cpu_count(),
  850. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  851. mge_options = {'init_type': 'MEDOID',
  852. 'random_inits': 10,
  853. 'time_limit': 600,
  854. 'verbose': 2,
  855. 'update_order': False,
  856. 'refine': False}
  857. save_results = True
  858. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  859. irrelevant_labels = None #
  860. edge_required = False #
  861. # print settings.
  862. file_output = open(dir_save + 'output.txt', 'a')
  863. sys.stdout = file_output
  864. print('parameters:')
  865. print('dataset name:', ds_name)
  866. print('mpg_options:', mpg_options)
  867. print('kernel_options:', kernel_options)
  868. print('ged_options:', ged_options)
  869. print('mge_options:', mge_options)
  870. print('save_results:', save_results)
  871. print('irrelevant_labels:', irrelevant_labels)
  872. print()
  873. # generate preimages.
  874. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  875. print('\n-------------------------------------')
  876. print('fit method:', fit_method, '\n')
  877. mpg_options['fit_method'] = fit_method
  878. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  879. def xp_median_preimage_8_3():
  880. """xp 8_3: Monoterpenoides, Treelet, using CONSTANT.
  881. """
  882. from gklearn.utils.kernels import polynomialkernel
  883. # set parameters.
  884. ds_name = 'Monoterpenoides' #
  885. mpg_options = {'fit_method': 'k-graphs',
  886. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  887. 'ds_name': ds_name,
  888. 'parallel': True, # False
  889. 'time_limit_in_sec': 0,
  890. 'max_itrs': 100, #
  891. 'max_itrs_without_update': 3,
  892. 'epsilon_residual': 0.01,
  893. 'epsilon_ec': 0.1,
  894. 'verbose': 2}
  895. pkernel = functools.partial(polynomialkernel, d=2, c=1e+5)
  896. kernel_options = {'name': 'Treelet',
  897. 'sub_kernel': pkernel,
  898. 'parallel': 'imap_unordered',
  899. # 'parallel': None,
  900. 'n_jobs': multiprocessing.cpu_count(),
  901. 'normalize': True,
  902. 'verbose': 2}
  903. ged_options = {'method': 'IPFP',
  904. 'initialization_method': 'RANDOM', # 'NODE'
  905. 'initial_solutions': 10, # 1
  906. 'edit_cost': 'CONSTANT', #
  907. 'attr_distance': 'euclidean',
  908. 'ratio_runs_from_initial_solutions': 1,
  909. 'threads': multiprocessing.cpu_count(),
  910. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  911. mge_options = {'init_type': 'MEDOID',
  912. 'random_inits': 10,
  913. 'time_limit': 600,
  914. 'verbose': 2,
  915. 'update_order': False,
  916. 'refine': False}
  917. save_results = True
  918. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  919. irrelevant_labels = None #
  920. edge_required = False #
  921. # print settings.
  922. file_output = open(dir_save + 'output.txt', 'a')
  923. sys.stdout = file_output
  924. print('parameters:')
  925. print('dataset name:', ds_name)
  926. print('mpg_options:', mpg_options)
  927. print('kernel_options:', kernel_options)
  928. print('ged_options:', ged_options)
  929. print('mge_options:', mge_options)
  930. print('save_results:', save_results)
  931. print('irrelevant_labels:', irrelevant_labels)
  932. print()
  933. # generate preimages.
  934. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  935. print('\n-------------------------------------')
  936. print('fit method:', fit_method, '\n')
  937. mpg_options['fit_method'] = fit_method
  938. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  939. def xp_median_preimage_8_4():
  940. """xp 8_4: Monoterpenoides, WeisfeilerLehman, using CONSTANT.
  941. """
  942. # set parameters.
  943. ds_name = 'Monoterpenoides' #
  944. mpg_options = {'fit_method': 'k-graphs',
  945. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  946. 'ds_name': ds_name,
  947. 'parallel': True, # False
  948. 'time_limit_in_sec': 0,
  949. 'max_itrs': 100, #
  950. 'max_itrs_without_update': 3,
  951. 'epsilon_residual': 0.01,
  952. 'epsilon_ec': 0.1,
  953. 'verbose': 2}
  954. kernel_options = {'name': 'WeisfeilerLehman',
  955. 'height': 4,
  956. 'base_kernel': 'subtree',
  957. 'parallel': 'imap_unordered',
  958. # 'parallel': None,
  959. 'n_jobs': multiprocessing.cpu_count(),
  960. 'normalize': True,
  961. 'verbose': 2}
  962. ged_options = {'method': 'IPFP',
  963. 'initialization_method': 'RANDOM', # 'NODE'
  964. 'initial_solutions': 10, # 1
  965. 'edit_cost': 'CONSTANT', #
  966. 'attr_distance': 'euclidean',
  967. 'ratio_runs_from_initial_solutions': 1,
  968. 'threads': multiprocessing.cpu_count(),
  969. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  970. mge_options = {'init_type': 'MEDOID',
  971. 'random_inits': 10,
  972. 'time_limit': 600,
  973. 'verbose': 2,
  974. 'update_order': False,
  975. 'refine': False}
  976. save_results = True
  977. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  978. irrelevant_labels = None #
  979. edge_required = False #
  980. # print settings.
  981. file_output = open(dir_save + 'output.txt', 'a')
  982. sys.stdout = file_output
  983. print('parameters:')
  984. print('dataset name:', ds_name)
  985. print('mpg_options:', mpg_options)
  986. print('kernel_options:', kernel_options)
  987. print('ged_options:', ged_options)
  988. print('mge_options:', mge_options)
  989. print('save_results:', save_results)
  990. print('irrelevant_labels:', irrelevant_labels)
  991. print()
  992. # generate preimages.
  993. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  994. print('\n-------------------------------------')
  995. print('fit method:', fit_method, '\n')
  996. mpg_options['fit_method'] = fit_method
  997. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  998. def xp_median_preimage_7_1():
  999. """xp 7_1: MUTAG, StructuralSP, using CONSTANT.
  1000. """
  1001. # set parameters.
  1002. ds_name = 'MUTAG' #
  1003. mpg_options = {'fit_method': 'k-graphs',
  1004. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  1005. 'ds_name': ds_name,
  1006. 'parallel': True, # False
  1007. 'time_limit_in_sec': 0,
  1008. 'max_itrs': 100, #
  1009. 'max_itrs_without_update': 3,
  1010. 'epsilon_residual': 0.01,
  1011. 'epsilon_ec': 0.1,
  1012. 'verbose': 2}
  1013. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1014. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1015. kernel_options = {'name': 'StructuralSP',
  1016. 'edge_weight': None,
  1017. 'node_kernels': sub_kernels,
  1018. 'edge_kernels': sub_kernels,
  1019. 'compute_method': 'naive',
  1020. 'parallel': 'imap_unordered',
  1021. # 'parallel': None,
  1022. 'n_jobs': multiprocessing.cpu_count(),
  1023. 'normalize': True,
  1024. 'verbose': 2}
  1025. ged_options = {'method': 'IPFP',
  1026. 'initialization_method': 'RANDOM', # 'NODE'
  1027. 'initial_solutions': 10, # 1
  1028. 'edit_cost': 'CONSTANT', #
  1029. 'attr_distance': 'euclidean',
  1030. 'ratio_runs_from_initial_solutions': 1,
  1031. 'threads': multiprocessing.cpu_count(),
  1032. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1033. mge_options = {'init_type': 'MEDOID',
  1034. 'random_inits': 10,
  1035. 'time_limit': 600,
  1036. 'verbose': 2,
  1037. 'update_order': False,
  1038. 'refine': False}
  1039. save_results = True
  1040. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1041. irrelevant_labels = None #
  1042. edge_required = False #
  1043. # print settings.
  1044. file_output = open(dir_save + 'output.txt', 'a')
  1045. sys.stdout = file_output
  1046. print('parameters:')
  1047. print('dataset name:', ds_name)
  1048. print('mpg_options:', mpg_options)
  1049. print('kernel_options:', kernel_options)
  1050. print('ged_options:', ged_options)
  1051. print('mge_options:', mge_options)
  1052. print('save_results:', save_results)
  1053. print('irrelevant_labels:', irrelevant_labels)
  1054. print()
  1055. # generate preimages.
  1056. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1057. print('\n-------------------------------------')
  1058. print('fit method:', fit_method, '\n')
  1059. mpg_options['fit_method'] = fit_method
  1060. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1061. def xp_median_preimage_7_2():
  1062. """xp 7_2: MUTAG, PathUpToH, using CONSTANT.
  1063. """
  1064. # set parameters.
  1065. ds_name = 'MUTAG' #
  1066. mpg_options = {'fit_method': 'k-graphs',
  1067. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  1068. 'ds_name': ds_name,
  1069. 'parallel': True, # False
  1070. 'time_limit_in_sec': 0,
  1071. 'max_itrs': 100, #
  1072. 'max_itrs_without_update': 3,
  1073. 'epsilon_residual': 0.01,
  1074. 'epsilon_ec': 0.1,
  1075. 'verbose': 2}
  1076. kernel_options = {'name': 'PathUpToH',
  1077. 'depth': 2, #
  1078. 'k_func': 'MinMax', #
  1079. 'compute_method': 'trie',
  1080. 'parallel': 'imap_unordered',
  1081. # 'parallel': None,
  1082. 'n_jobs': multiprocessing.cpu_count(),
  1083. 'normalize': True,
  1084. 'verbose': 2}
  1085. ged_options = {'method': 'IPFP',
  1086. 'initialization_method': 'RANDOM', # 'NODE'
  1087. 'initial_solutions': 10, # 1
  1088. 'edit_cost': 'CONSTANT', #
  1089. 'attr_distance': 'euclidean',
  1090. 'ratio_runs_from_initial_solutions': 1,
  1091. 'threads': multiprocessing.cpu_count(),
  1092. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1093. mge_options = {'init_type': 'MEDOID',
  1094. 'random_inits': 10,
  1095. 'time_limit': 600,
  1096. 'verbose': 2,
  1097. 'update_order': False,
  1098. 'refine': False}
  1099. save_results = True
  1100. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1101. irrelevant_labels = None #
  1102. edge_required = False #
  1103. # print settings.
  1104. file_output = open(dir_save + 'output.txt', 'a')
  1105. sys.stdout = file_output
  1106. print('parameters:')
  1107. print('dataset name:', ds_name)
  1108. print('mpg_options:', mpg_options)
  1109. print('kernel_options:', kernel_options)
  1110. print('ged_options:', ged_options)
  1111. print('mge_options:', mge_options)
  1112. print('save_results:', save_results)
  1113. print('irrelevant_labels:', irrelevant_labels)
  1114. print()
  1115. # generate preimages.
  1116. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1117. print('\n-------------------------------------')
  1118. print('fit method:', fit_method, '\n')
  1119. mpg_options['fit_method'] = fit_method
  1120. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1121. def xp_median_preimage_7_3():
  1122. """xp 7_3: MUTAG, Treelet, using CONSTANT.
  1123. """
  1124. from gklearn.utils.kernels import polynomialkernel
  1125. # set parameters.
  1126. ds_name = 'MUTAG' #
  1127. mpg_options = {'fit_method': 'k-graphs',
  1128. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  1129. 'ds_name': ds_name,
  1130. 'parallel': True, # False
  1131. 'time_limit_in_sec': 0,
  1132. 'max_itrs': 100, #
  1133. 'max_itrs_without_update': 3,
  1134. 'epsilon_residual': 0.01,
  1135. 'epsilon_ec': 0.1,
  1136. 'verbose': 2}
  1137. pkernel = functools.partial(polynomialkernel, d=3, c=1e+8)
  1138. kernel_options = {'name': 'Treelet',
  1139. 'sub_kernel': pkernel,
  1140. 'parallel': 'imap_unordered',
  1141. # 'parallel': None,
  1142. 'n_jobs': multiprocessing.cpu_count(),
  1143. 'normalize': True,
  1144. 'verbose': 2}
  1145. ged_options = {'method': 'IPFP',
  1146. 'initialization_method': 'RANDOM', # 'NODE'
  1147. 'initial_solutions': 10, # 1
  1148. 'edit_cost': 'CONSTANT', #
  1149. 'attr_distance': 'euclidean',
  1150. 'ratio_runs_from_initial_solutions': 1,
  1151. 'threads': multiprocessing.cpu_count(),
  1152. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1153. mge_options = {'init_type': 'MEDOID',
  1154. 'random_inits': 10,
  1155. 'time_limit': 600,
  1156. 'verbose': 2,
  1157. 'update_order': False,
  1158. 'refine': False}
  1159. save_results = True
  1160. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1161. irrelevant_labels = None #
  1162. edge_required = False #
  1163. # print settings.
  1164. file_output = open(dir_save + 'output.txt', 'a')
  1165. sys.stdout = file_output
  1166. print('parameters:')
  1167. print('dataset name:', ds_name)
  1168. print('mpg_options:', mpg_options)
  1169. print('kernel_options:', kernel_options)
  1170. print('ged_options:', ged_options)
  1171. print('mge_options:', mge_options)
  1172. print('save_results:', save_results)
  1173. print('irrelevant_labels:', irrelevant_labels)
  1174. print()
  1175. # generate preimages.
  1176. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1177. print('\n-------------------------------------')
  1178. print('fit method:', fit_method, '\n')
  1179. mpg_options['fit_method'] = fit_method
  1180. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1181. def xp_median_preimage_7_4():
  1182. """xp 7_4: MUTAG, WeisfeilerLehman, using CONSTANT.
  1183. """
  1184. # set parameters.
  1185. ds_name = 'MUTAG' #
  1186. mpg_options = {'fit_method': 'k-graphs',
  1187. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  1188. 'ds_name': ds_name,
  1189. 'parallel': True, # False
  1190. 'time_limit_in_sec': 0,
  1191. 'max_itrs': 100, #
  1192. 'max_itrs_without_update': 3,
  1193. 'epsilon_residual': 0.01,
  1194. 'epsilon_ec': 0.1,
  1195. 'verbose': 2}
  1196. kernel_options = {'name': 'WeisfeilerLehman',
  1197. 'height': 1,
  1198. 'base_kernel': 'subtree',
  1199. 'parallel': 'imap_unordered',
  1200. # 'parallel': None,
  1201. 'n_jobs': multiprocessing.cpu_count(),
  1202. 'normalize': True,
  1203. 'verbose': 2}
  1204. ged_options = {'method': 'IPFP',
  1205. 'initialization_method': 'RANDOM', # 'NODE'
  1206. 'initial_solutions': 10, # 1
  1207. 'edit_cost': 'CONSTANT', #
  1208. 'attr_distance': 'euclidean',
  1209. 'ratio_runs_from_initial_solutions': 1,
  1210. 'threads': multiprocessing.cpu_count(),
  1211. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1212. mge_options = {'init_type': 'MEDOID',
  1213. 'random_inits': 10,
  1214. 'time_limit': 600,
  1215. 'verbose': 2,
  1216. 'update_order': False,
  1217. 'refine': False}
  1218. save_results = True
  1219. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1220. irrelevant_labels = None #
  1221. edge_required = False #
  1222. # print settings.
  1223. file_output = open(dir_save + 'output.txt', 'a')
  1224. sys.stdout = file_output
  1225. print('parameters:')
  1226. print('dataset name:', ds_name)
  1227. print('mpg_options:', mpg_options)
  1228. print('kernel_options:', kernel_options)
  1229. print('ged_options:', ged_options)
  1230. print('mge_options:', mge_options)
  1231. print('save_results:', save_results)
  1232. print('irrelevant_labels:', irrelevant_labels)
  1233. print()
  1234. # generate preimages.
  1235. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1236. print('\n-------------------------------------')
  1237. print('fit method:', fit_method, '\n')
  1238. mpg_options['fit_method'] = fit_method
  1239. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1240. def xp_median_preimage_6_1():
  1241. """xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
  1242. """
  1243. # set parameters.
  1244. ds_name = 'COIL-RAG' #
  1245. mpg_options = {'fit_method': 'k-graphs',
  1246. 'init_ecc': [3, 3, 1, 3, 3, 1], #
  1247. 'ds_name': ds_name,
  1248. 'parallel': True, # False
  1249. 'time_limit_in_sec': 0,
  1250. 'max_itrs': 100,
  1251. 'max_itrs_without_update': 3,
  1252. 'epsilon_residual': 0.01,
  1253. 'epsilon_ec': 0.1,
  1254. 'verbose': 2}
  1255. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1256. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1257. kernel_options = {'name': 'StructuralSP',
  1258. 'edge_weight': None,
  1259. 'node_kernels': sub_kernels,
  1260. 'edge_kernels': sub_kernels,
  1261. 'compute_method': 'naive',
  1262. 'parallel': 'imap_unordered',
  1263. # 'parallel': None,
  1264. 'n_jobs': multiprocessing.cpu_count(),
  1265. 'normalize': True,
  1266. 'verbose': 2}
  1267. ged_options = {'method': 'IPFP',
  1268. 'initialization_method': 'RANDOM', # 'NODE'
  1269. 'initial_solutions': 10, # 1
  1270. 'edit_cost': 'NON_SYMBOLIC', #
  1271. 'attr_distance': 'euclidean',
  1272. 'ratio_runs_from_initial_solutions': 1,
  1273. 'threads': multiprocessing.cpu_count(),
  1274. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1275. mge_options = {'init_type': 'MEDOID',
  1276. 'random_inits': 10,
  1277. 'time_limit': 600,
  1278. 'verbose': 2,
  1279. 'update_order': False,
  1280. 'refine': False}
  1281. save_results = True
  1282. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1283. irrelevant_labels = None #
  1284. edge_required = False #
  1285. # print settings.
  1286. file_output = open(dir_save + 'output.txt', 'a')
  1287. sys.stdout = file_output
  1288. print('parameters:')
  1289. print('dataset name:', ds_name)
  1290. print('mpg_options:', mpg_options)
  1291. print('kernel_options:', kernel_options)
  1292. print('ged_options:', ged_options)
  1293. print('mge_options:', mge_options)
  1294. print('save_results:', save_results)
  1295. print('irrelevant_labels:', irrelevant_labels)
  1296. print()
  1297. # generate preimages.
  1298. for fit_method in ['k-graphs'] + ['random'] * 5:
  1299. print('\n-------------------------------------')
  1300. print('fit method:', fit_method, '\n')
  1301. mpg_options['fit_method'] = fit_method
  1302. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1303. def xp_median_preimage_6_2():
  1304. """xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
  1305. """
  1306. # set parameters.
  1307. ds_name = 'COIL-RAG' #
  1308. mpg_options = {'fit_method': 'k-graphs',
  1309. 'init_ecc': [3, 3, 1, 3, 3, 1], #
  1310. 'ds_name': ds_name,
  1311. 'parallel': True, # False
  1312. 'time_limit_in_sec': 0,
  1313. 'max_itrs': 100,
  1314. 'max_itrs_without_update': 3,
  1315. 'epsilon_residual': 0.01,
  1316. 'epsilon_ec': 0.1,
  1317. 'verbose': 2}
  1318. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1319. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1320. kernel_options = {'name': 'ShortestPath',
  1321. 'edge_weight': None,
  1322. 'node_kernels': sub_kernels,
  1323. 'parallel': 'imap_unordered',
  1324. # 'parallel': None,
  1325. 'n_jobs': multiprocessing.cpu_count(),
  1326. 'normalize': True,
  1327. 'verbose': 2}
  1328. ged_options = {'method': 'IPFP',
  1329. 'initialization_method': 'RANDOM', # 'NODE'
  1330. 'initial_solutions': 10, # 1
  1331. 'edit_cost': 'NON_SYMBOLIC', #
  1332. 'attr_distance': 'euclidean',
  1333. 'ratio_runs_from_initial_solutions': 1,
  1334. 'threads': multiprocessing.cpu_count(),
  1335. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1336. mge_options = {'init_type': 'MEDOID',
  1337. 'random_inits': 10,
  1338. 'time_limit': 600,
  1339. 'verbose': 2,
  1340. 'update_order': False,
  1341. 'refine': False}
  1342. save_results = True
  1343. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1344. irrelevant_labels = None #
  1345. edge_required = True #
  1346. # print settings.
  1347. if not os.path.exists(dir_save):
  1348. os.makedirs(dir_save)
  1349. file_output = open(dir_save + 'output.txt', 'a')
  1350. sys.stdout = file_output
  1351. print('parameters:')
  1352. print('dataset name:', ds_name)
  1353. print('mpg_options:', mpg_options)
  1354. print('kernel_options:', kernel_options)
  1355. print('ged_options:', ged_options)
  1356. print('mge_options:', mge_options)
  1357. print('save_results:', save_results)
  1358. print('irrelevant_labels:', irrelevant_labels)
  1359. print()
  1360. # generate preimages.
  1361. for fit_method in ['k-graphs'] + ['random'] * 5:
  1362. print('\n-------------------------------------')
  1363. print('fit method:', fit_method, '\n')
  1364. mpg_options['fit_method'] = fit_method
  1365. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1366. def xp_median_preimage_5_1():
  1367. """xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
  1368. """
  1369. # set parameters.
  1370. ds_name = 'FRANKENSTEIN' #
  1371. mpg_options = {'fit_method': 'k-graphs',
  1372. 'init_ecc': [3, 3, 1, 3, 3, 0], #
  1373. 'ds_name': ds_name,
  1374. 'parallel': True, # False
  1375. 'time_limit_in_sec': 0,
  1376. 'max_itrs': 100,
  1377. 'max_itrs_without_update': 3,
  1378. 'epsilon_residual': 0.01,
  1379. 'epsilon_ec': 0.1,
  1380. 'verbose': 2}
  1381. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1382. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1383. kernel_options = {'name': 'StructuralSP',
  1384. 'edge_weight': None,
  1385. 'node_kernels': sub_kernels,
  1386. 'edge_kernels': sub_kernels,
  1387. 'compute_method': 'naive',
  1388. 'parallel': 'imap_unordered',
  1389. # 'parallel': None,
  1390. 'n_jobs': multiprocessing.cpu_count(),
  1391. 'normalize': True,
  1392. 'verbose': 2}
  1393. ged_options = {'method': 'IPFP',
  1394. 'initialization_method': 'RANDOM', # 'NODE'
  1395. 'initial_solutions': 10, # 1
  1396. 'edit_cost': 'NON_SYMBOLIC',
  1397. 'attr_distance': 'euclidean',
  1398. 'ratio_runs_from_initial_solutions': 1,
  1399. 'threads': multiprocessing.cpu_count(),
  1400. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1401. mge_options = {'init_type': 'MEDOID',
  1402. 'random_inits': 10,
  1403. 'time_limit': 600,
  1404. 'verbose': 2,
  1405. 'update_order': False,
  1406. 'refine': False}
  1407. save_results = True
  1408. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1409. irrelevant_labels = None #
  1410. edge_required = False #
  1411. # print settings.
  1412. file_output = open(dir_save + 'output.txt', 'a')
  1413. sys.stdout = file_output
  1414. print('parameters:')
  1415. print('dataset name:', ds_name)
  1416. print('mpg_options:', mpg_options)
  1417. print('kernel_options:', kernel_options)
  1418. print('ged_options:', ged_options)
  1419. print('mge_options:', mge_options)
  1420. print('save_results:', save_results)
  1421. print('irrelevant_labels:', irrelevant_labels)
  1422. print()
  1423. # generate preimages.
  1424. for fit_method in ['k-graphs'] + ['random'] * 5:
  1425. print('\n-------------------------------------')
  1426. print('fit method:', fit_method, '\n')
  1427. mpg_options['fit_method'] = fit_method
  1428. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1429. def xp_median_preimage_4_1():
  1430. """xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
  1431. """
  1432. # set parameters.
  1433. ds_name = 'COLORS-3' #
  1434. mpg_options = {'fit_method': 'k-graphs',
  1435. 'init_ecc': [3, 3, 1, 3, 3, 0], #
  1436. 'ds_name': ds_name,
  1437. 'parallel': True, # False
  1438. 'time_limit_in_sec': 0,
  1439. 'max_itrs': 100,
  1440. 'max_itrs_without_update': 3,
  1441. 'epsilon_residual': 0.01,
  1442. 'epsilon_ec': 0.1,
  1443. 'verbose': 2}
  1444. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1445. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1446. kernel_options = {'name': 'StructuralSP',
  1447. 'edge_weight': None,
  1448. 'node_kernels': sub_kernels,
  1449. 'edge_kernels': sub_kernels,
  1450. 'compute_method': 'naive',
  1451. 'parallel': 'imap_unordered',
  1452. # 'parallel': None,
  1453. 'n_jobs': multiprocessing.cpu_count(),
  1454. 'normalize': True,
  1455. 'verbose': 2}
  1456. ged_options = {'method': 'IPFP',
  1457. 'initialization_method': 'RANDOM', # 'NODE'
  1458. 'initial_solutions': 10, # 1
  1459. 'edit_cost': 'NON_SYMBOLIC',
  1460. 'attr_distance': 'euclidean',
  1461. 'ratio_runs_from_initial_solutions': 1,
  1462. 'threads': multiprocessing.cpu_count(),
  1463. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1464. mge_options = {'init_type': 'MEDOID',
  1465. 'random_inits': 10,
  1466. 'time_limit': 600,
  1467. 'verbose': 2,
  1468. 'update_order': False,
  1469. 'refine': False}
  1470. save_results = True
  1471. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1472. irrelevant_labels = None #
  1473. edge_required = False #
  1474. # print settings.
  1475. file_output = open(dir_save + 'output.txt', 'a')
  1476. sys.stdout = file_output
  1477. print('parameters:')
  1478. print('dataset name:', ds_name)
  1479. print('mpg_options:', mpg_options)
  1480. print('kernel_options:', kernel_options)
  1481. print('ged_options:', ged_options)
  1482. print('mge_options:', mge_options)
  1483. print('save_results:', save_results)
  1484. print('irrelevant_labels:', irrelevant_labels)
  1485. print()
  1486. # generate preimages.
  1487. for fit_method in ['k-graphs'] + ['random'] * 5:
  1488. print('\n-------------------------------------')
  1489. print('fit method:', fit_method, '\n')
  1490. mpg_options['fit_method'] = fit_method
  1491. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1492. def xp_median_preimage_3_2():
  1493. """xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
  1494. """
  1495. # set parameters.
  1496. ds_name = 'Fingerprint' #
  1497. mpg_options = {'fit_method': 'k-graphs',
  1498. 'init_ecc': [0.525, 0.525, 0.01, 0.125, 0.125], #
  1499. 'ds_name': ds_name,
  1500. 'parallel': True, # False
  1501. 'time_limit_in_sec': 0,
  1502. 'max_itrs': 100,
  1503. 'max_itrs_without_update': 3,
  1504. 'epsilon_residual': 0.01,
  1505. 'epsilon_ec': 0.1,
  1506. 'verbose': 2}
  1507. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1508. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1509. kernel_options = {'name': 'ShortestPath',
  1510. 'edge_weight': None,
  1511. 'node_kernels': sub_kernels,
  1512. 'parallel': 'imap_unordered',
  1513. # 'parallel': None,
  1514. 'n_jobs': multiprocessing.cpu_count(),
  1515. 'normalize': True,
  1516. 'verbose': 2}
  1517. ged_options = {'method': 'IPFP',
  1518. 'initialization_method': 'RANDOM', # 'NODE'
  1519. 'initial_solutions': 10, # 1
  1520. 'edit_cost': 'LETTER2',
  1521. 'attr_distance': 'euclidean',
  1522. 'ratio_runs_from_initial_solutions': 1,
  1523. 'threads': multiprocessing.cpu_count(),
  1524. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1525. mge_options = {'init_type': 'MEDOID',
  1526. 'random_inits': 10,
  1527. 'time_limit': 600,
  1528. 'verbose': 2,
  1529. 'update_order': False,
  1530. 'refine': False}
  1531. save_results = True
  1532. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1533. irrelevant_labels = {'edge_attrs': ['orient', 'angle']} #
  1534. edge_required = True #
  1535. # print settings.
  1536. if not os.path.exists(dir_save):
  1537. os.makedirs(dir_save)
  1538. file_output = open(dir_save + 'output.txt', 'a')
  1539. sys.stdout = file_output
  1540. print('parameters:')
  1541. print('dataset name:', ds_name)
  1542. print('mpg_options:', mpg_options)
  1543. print('kernel_options:', kernel_options)
  1544. print('ged_options:', ged_options)
  1545. print('mge_options:', mge_options)
  1546. print('save_results:', save_results)
  1547. print('irrelevant_labels:', irrelevant_labels)
  1548. print()
  1549. # generate preimages.
  1550. for fit_method in ['k-graphs'] + ['random'] * 5:
  1551. print('\n-------------------------------------')
  1552. print('fit method:', fit_method, '\n')
  1553. mpg_options['fit_method'] = fit_method
  1554. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1555. def xp_median_preimage_3_1():
  1556. """xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
  1557. """
  1558. # set parameters.
  1559. ds_name = 'Fingerprint' #
  1560. mpg_options = {'fit_method': 'k-graphs',
  1561. 'init_ecc': [0.525, 0.525, 0.01, 0.125, 0.125], #
  1562. 'ds_name': ds_name,
  1563. 'parallel': True, # False
  1564. 'time_limit_in_sec': 0,
  1565. 'max_itrs': 100,
  1566. 'max_itrs_without_update': 3,
  1567. 'epsilon_residual': 0.01,
  1568. 'epsilon_ec': 0.1,
  1569. 'verbose': 2}
  1570. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1571. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1572. kernel_options = {'name': 'StructuralSP',
  1573. 'edge_weight': None,
  1574. 'node_kernels': sub_kernels,
  1575. 'edge_kernels': sub_kernels,
  1576. 'compute_method': 'naive',
  1577. 'parallel': 'imap_unordered',
  1578. # 'parallel': None,
  1579. 'n_jobs': multiprocessing.cpu_count(),
  1580. 'normalize': True,
  1581. 'verbose': 2}
  1582. ged_options = {'method': 'IPFP',
  1583. 'initialization_method': 'RANDOM', # 'NODE'
  1584. 'initial_solutions': 10, # 1
  1585. 'edit_cost': 'LETTER2',
  1586. 'attr_distance': 'euclidean',
  1587. 'ratio_runs_from_initial_solutions': 1,
  1588. 'threads': multiprocessing.cpu_count(),
  1589. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1590. mge_options = {'init_type': 'MEDOID',
  1591. 'random_inits': 10,
  1592. 'time_limit': 600,
  1593. 'verbose': 2,
  1594. 'update_order': False,
  1595. 'refine': False}
  1596. save_results = True
  1597. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1598. irrelevant_labels = {'edge_attrs': ['orient', 'angle']} #
  1599. edge_required = False #
  1600. # print settings.
  1601. if not os.path.exists(dir_save):
  1602. os.makedirs(dir_save)
  1603. file_output = open(dir_save + 'output.txt', 'a')
  1604. sys.stdout = file_output
  1605. print('parameters:')
  1606. print('dataset name:', ds_name)
  1607. print('mpg_options:', mpg_options)
  1608. print('kernel_options:', kernel_options)
  1609. print('ged_options:', ged_options)
  1610. print('mge_options:', mge_options)
  1611. print('save_results:', save_results)
  1612. print('irrelevant_labels:', irrelevant_labels)
  1613. print()
  1614. # generate preimages.
  1615. for fit_method in ['k-graphs'] + ['random'] * 5:
  1616. print('\n-------------------------------------')
  1617. print('fit method:', fit_method, '\n')
  1618. mpg_options['fit_method'] = fit_method
  1619. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1620. def xp_median_preimage_2_1():
  1621. """xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
  1622. """
  1623. # set parameters.
  1624. ds_name = 'COIL-DEL' #
  1625. mpg_options = {'fit_method': 'k-graphs',
  1626. 'init_ecc': [3, 3, 1, 3, 3],
  1627. 'ds_name': ds_name,
  1628. 'parallel': True, # False
  1629. 'time_limit_in_sec': 0,
  1630. 'max_itrs': 100,
  1631. 'max_itrs_without_update': 3,
  1632. 'epsilon_residual': 0.01,
  1633. 'epsilon_ec': 0.1,
  1634. 'verbose': 2}
  1635. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1636. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1637. kernel_options = {'name': 'StructuralSP',
  1638. 'edge_weight': None,
  1639. 'node_kernels': sub_kernels,
  1640. 'edge_kernels': sub_kernels,
  1641. 'compute_method': 'naive',
  1642. 'parallel': 'imap_unordered',
  1643. # 'parallel': None,
  1644. 'n_jobs': multiprocessing.cpu_count(),
  1645. 'normalize': True,
  1646. 'verbose': 2}
  1647. ged_options = {'method': 'IPFP',
  1648. 'initialization_method': 'RANDOM', # 'NODE'
  1649. 'initial_solutions': 10, # 1
  1650. 'edit_cost': 'LETTER2',
  1651. 'attr_distance': 'euclidean',
  1652. 'ratio_runs_from_initial_solutions': 1,
  1653. 'threads': multiprocessing.cpu_count(),
  1654. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1655. mge_options = {'init_type': 'MEDOID',
  1656. 'random_inits': 10,
  1657. 'time_limit': 0,
  1658. 'verbose': 2,
  1659. 'update_order': False,
  1660. 'refine': False}
  1661. save_results = True
  1662. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.node_attrs/'
  1663. irrelevant_labels = {'edge_labels': ['valence']}
  1664. # print settings.
  1665. if not os.path.exists(dir_save):
  1666. os.makedirs(dir_save)
  1667. file_output = open(dir_save + 'output.txt', 'a')
  1668. sys.stdout = file_output
  1669. print('parameters:')
  1670. print('dataset name:', ds_name)
  1671. print('mpg_options:', mpg_options)
  1672. print('kernel_options:', kernel_options)
  1673. print('ged_options:', ged_options)
  1674. print('mge_options:', mge_options)
  1675. print('save_results:', save_results)
  1676. print('irrelevant_labels:', irrelevant_labels)
  1677. print()
  1678. # # compute gram matrices for each class a priori.
  1679. # print('Compute gram matrices for each class a priori.')
  1680. # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
  1681. # generate preimages.
  1682. for fit_method in ['k-graphs'] + ['random'] * 5:
  1683. print('\n-------------------------------------')
  1684. print('fit method:', fit_method, '\n')
  1685. mpg_options['fit_method'] = fit_method
  1686. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels)
  1687. def xp_median_preimage_1_1():
  1688. """xp 1_1: Letter-high, StructuralSP.
  1689. """
  1690. # set parameters.
  1691. ds_name = 'Letter-high'
  1692. mpg_options = {'fit_method': 'k-graphs',
  1693. 'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425],
  1694. 'ds_name': ds_name,
  1695. 'parallel': True, # False
  1696. 'time_limit_in_sec': 0,
  1697. 'max_itrs': 100,
  1698. 'max_itrs_without_update': 3,
  1699. 'epsilon_residual': 0.01,
  1700. 'epsilon_ec': 0.1,
  1701. 'verbose': 2}
  1702. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1703. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1704. kernel_options = {'name': 'StructuralSP',
  1705. 'edge_weight': None,
  1706. 'node_kernels': sub_kernels,
  1707. 'edge_kernels': sub_kernels,
  1708. 'compute_method': 'naive',
  1709. 'parallel': 'imap_unordered',
  1710. # 'parallel': None,
  1711. 'n_jobs': multiprocessing.cpu_count(),
  1712. 'normalize': True,
  1713. 'verbose': 2}
  1714. ged_options = {'method': 'IPFP',
  1715. 'initialization_method': 'RANDOM', # 'NODE'
  1716. 'initial_solutions': 10, # 1
  1717. 'edit_cost': 'LETTER2',
  1718. 'attr_distance': 'euclidean',
  1719. 'ratio_runs_from_initial_solutions': 1,
  1720. 'threads': multiprocessing.cpu_count(),
  1721. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1722. mge_options = {'init_type': 'MEDOID',
  1723. 'random_inits': 10,
  1724. 'time_limit': 600,
  1725. 'verbose': 2,
  1726. 'update_order': False,
  1727. 'refine': False}
  1728. save_results = True
  1729. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1730. # print settings.
  1731. file_output = open(dir_save + 'output.txt', 'a')
  1732. sys.stdout = file_output
  1733. print('parameters:')
  1734. print('dataset name:', ds_name)
  1735. print('mpg_options:', mpg_options)
  1736. print('kernel_options:', kernel_options)
  1737. print('ged_options:', ged_options)
  1738. print('mge_options:', mge_options)
  1739. print('save_results:', save_results)
  1740. # generate preimages.
  1741. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1742. print('\n-------------------------------------')
  1743. print('fit method:', fit_method, '\n')
  1744. mpg_options['fit_method'] = fit_method
  1745. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
  1746. def xp_median_preimage_1_2():
  1747. """xp 1_2: Letter-high, ShortestPath.
  1748. """
  1749. # set parameters.
  1750. ds_name = 'Letter-high'
  1751. mpg_options = {'fit_method': 'k-graphs',
  1752. 'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425],
  1753. 'ds_name': ds_name,
  1754. 'parallel': True, # False
  1755. 'time_limit_in_sec': 0,
  1756. 'max_itrs': 100,
  1757. 'max_itrs_without_update': 3,
  1758. 'epsilon_residual': 0.01,
  1759. 'epsilon_ec': 0.1,
  1760. 'verbose': 2}
  1761. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1762. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1763. kernel_options = {'name': 'ShortestPath',
  1764. 'edge_weight': None,
  1765. 'node_kernels': sub_kernels,
  1766. 'parallel': 'imap_unordered',
  1767. # 'parallel': None,
  1768. 'n_jobs': multiprocessing.cpu_count(),
  1769. 'normalize': True,
  1770. 'verbose': 2}
  1771. ged_options = {'method': 'IPFP',
  1772. 'initialization_method': 'RANDOM', # 'NODE'
  1773. 'initial_solutions': 10, # 1
  1774. 'edit_cost': 'LETTER2',
  1775. 'attr_distance': 'euclidean',
  1776. 'ratio_runs_from_initial_solutions': 1,
  1777. 'threads': multiprocessing.cpu_count(),
  1778. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1779. mge_options = {'init_type': 'MEDOID',
  1780. 'random_inits': 10,
  1781. 'time_limit': 600,
  1782. 'verbose': 2,
  1783. 'update_order': False,
  1784. 'refine': False}
  1785. save_results = True
  1786. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1787. irrelevant_labels = None #
  1788. edge_required = True #
  1789. # print settings.
  1790. file_output = open(dir_save + 'output.txt', 'a')
  1791. sys.stdout = file_output
  1792. print('parameters:')
  1793. print('dataset name:', ds_name)
  1794. print('mpg_options:', mpg_options)
  1795. print('kernel_options:', kernel_options)
  1796. print('ged_options:', ged_options)
  1797. print('mge_options:', mge_options)
  1798. print('save_results:', save_results)
  1799. print('irrelevant_labels:', irrelevant_labels)
  1800. print()
  1801. # generate preimages.
  1802. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1803. print('\n-------------------------------------')
  1804. print('fit method:', fit_method, '\n')
  1805. mpg_options['fit_method'] = fit_method
  1806. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1807. def xp_median_preimage_10_1():
  1808. """xp 10_1: Letter-med, StructuralSP.
  1809. """
  1810. # set parameters.
  1811. ds_name = 'Letter-med'
  1812. mpg_options = {'fit_method': 'k-graphs',
  1813. 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475],
  1814. 'ds_name': ds_name,
  1815. 'parallel': True, # False
  1816. 'time_limit_in_sec': 0,
  1817. 'max_itrs': 100,
  1818. 'max_itrs_without_update': 3,
  1819. 'epsilon_residual': 0.01,
  1820. 'epsilon_ec': 0.1,
  1821. 'verbose': 2}
  1822. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1823. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1824. kernel_options = {'name': 'StructuralSP',
  1825. 'edge_weight': None,
  1826. 'node_kernels': sub_kernels,
  1827. 'edge_kernels': sub_kernels,
  1828. 'compute_method': 'naive',
  1829. 'parallel': 'imap_unordered',
  1830. # 'parallel': None,
  1831. 'n_jobs': multiprocessing.cpu_count(),
  1832. 'normalize': True,
  1833. 'verbose': 2}
  1834. ged_options = {'method': 'IPFP',
  1835. 'initialization_method': 'RANDOM', # 'NODE'
  1836. 'initial_solutions': 10, # 1
  1837. 'edit_cost': 'LETTER2',
  1838. 'attr_distance': 'euclidean',
  1839. 'ratio_runs_from_initial_solutions': 1,
  1840. 'threads': multiprocessing.cpu_count(),
  1841. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1842. mge_options = {'init_type': 'MEDOID',
  1843. 'random_inits': 10,
  1844. 'time_limit': 600,
  1845. 'verbose': 2,
  1846. 'update_order': False,
  1847. 'refine': False}
  1848. save_results = True
  1849. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1850. # print settings.
  1851. file_output = open(dir_save + 'output.txt', 'a')
  1852. sys.stdout = file_output
  1853. print('parameters:')
  1854. print('dataset name:', ds_name)
  1855. print('mpg_options:', mpg_options)
  1856. print('kernel_options:', kernel_options)
  1857. print('ged_options:', ged_options)
  1858. print('mge_options:', mge_options)
  1859. print('save_results:', save_results)
  1860. # generate preimages.
  1861. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1862. print('\n-------------------------------------')
  1863. print('fit method:', fit_method, '\n')
  1864. mpg_options['fit_method'] = fit_method
  1865. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
  1866. def xp_median_preimage_10_2():
  1867. """xp 10_2: Letter-med, ShortestPath.
  1868. """
  1869. # set parameters.
  1870. ds_name = 'Letter-med'
  1871. mpg_options = {'fit_method': 'k-graphs',
  1872. 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475],
  1873. 'ds_name': ds_name,
  1874. 'parallel': True, # False
  1875. 'time_limit_in_sec': 0,
  1876. 'max_itrs': 100,
  1877. 'max_itrs_without_update': 3,
  1878. 'epsilon_residual': 0.01,
  1879. 'epsilon_ec': 0.1,
  1880. 'verbose': 2}
  1881. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1882. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1883. kernel_options = {'name': 'ShortestPath',
  1884. 'edge_weight': None,
  1885. 'node_kernels': sub_kernels,
  1886. 'parallel': 'imap_unordered',
  1887. # 'parallel': None,
  1888. 'n_jobs': multiprocessing.cpu_count(),
  1889. 'normalize': True,
  1890. 'verbose': 2}
  1891. ged_options = {'method': 'IPFP',
  1892. 'initialization_method': 'RANDOM', # 'NODE'
  1893. 'initial_solutions': 10, # 1
  1894. 'edit_cost': 'LETTER2',
  1895. 'attr_distance': 'euclidean',
  1896. 'ratio_runs_from_initial_solutions': 1,
  1897. 'threads': multiprocessing.cpu_count(),
  1898. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1899. mge_options = {'init_type': 'MEDOID',
  1900. 'random_inits': 10,
  1901. 'time_limit': 600,
  1902. 'verbose': 2,
  1903. 'update_order': False,
  1904. 'refine': False}
  1905. save_results = True
  1906. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1907. irrelevant_labels = None #
  1908. edge_required = True #
  1909. # print settings.
  1910. file_output = open(dir_save + 'output.txt', 'a')
  1911. sys.stdout = file_output
  1912. print('parameters:')
  1913. print('dataset name:', ds_name)
  1914. print('mpg_options:', mpg_options)
  1915. print('kernel_options:', kernel_options)
  1916. print('ged_options:', ged_options)
  1917. print('mge_options:', mge_options)
  1918. print('save_results:', save_results)
  1919. print('irrelevant_labels:', irrelevant_labels)
  1920. print()
  1921. # generate preimages.
  1922. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1923. print('\n-------------------------------------')
  1924. print('fit method:', fit_method, '\n')
  1925. mpg_options['fit_method'] = fit_method
  1926. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1927. def xp_median_preimage_11_1():
  1928. """xp 11_1: Letter-low, StructuralSP.
  1929. """
  1930. # set parameters.
  1931. ds_name = 'Letter-low'
  1932. mpg_options = {'fit_method': 'k-graphs',
  1933. 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075],
  1934. 'ds_name': ds_name,
  1935. 'parallel': True, # False
  1936. 'time_limit_in_sec': 0,
  1937. 'max_itrs': 100,
  1938. 'max_itrs_without_update': 3,
  1939. 'epsilon_residual': 0.01,
  1940. 'epsilon_ec': 0.1,
  1941. 'verbose': 2}
  1942. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1943. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1944. kernel_options = {'name': 'StructuralSP',
  1945. 'edge_weight': None,
  1946. 'node_kernels': sub_kernels,
  1947. 'edge_kernels': sub_kernels,
  1948. 'compute_method': 'naive',
  1949. 'parallel': 'imap_unordered',
  1950. # 'parallel': None,
  1951. 'n_jobs': multiprocessing.cpu_count(),
  1952. 'normalize': True,
  1953. 'verbose': 2}
  1954. ged_options = {'method': 'IPFP',
  1955. 'initialization_method': 'RANDOM', # 'NODE'
  1956. 'initial_solutions': 10, # 1
  1957. 'edit_cost': 'LETTER2',
  1958. 'attr_distance': 'euclidean',
  1959. 'ratio_runs_from_initial_solutions': 1,
  1960. 'threads': multiprocessing.cpu_count(),
  1961. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1962. mge_options = {'init_type': 'MEDOID',
  1963. 'random_inits': 10,
  1964. 'time_limit': 600,
  1965. 'verbose': 2,
  1966. 'update_order': False,
  1967. 'refine': False}
  1968. save_results = True
  1969. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1970. # print settings.
  1971. file_output = open(dir_save + 'output.txt', 'a')
  1972. sys.stdout = file_output
  1973. print('parameters:')
  1974. print('dataset name:', ds_name)
  1975. print('mpg_options:', mpg_options)
  1976. print('kernel_options:', kernel_options)
  1977. print('ged_options:', ged_options)
  1978. print('mge_options:', mge_options)
  1979. print('save_results:', save_results)
  1980. # generate preimages.
  1981. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1982. print('\n-------------------------------------')
  1983. print('fit method:', fit_method, '\n')
  1984. mpg_options['fit_method'] = fit_method
  1985. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
  1986. def xp_median_preimage_11_2():
  1987. """xp 11_2: Letter-low, ShortestPath.
  1988. """
  1989. # set parameters.
  1990. ds_name = 'Letter-low'
  1991. mpg_options = {'fit_method': 'k-graphs',
  1992. 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075],
  1993. 'ds_name': ds_name,
  1994. 'parallel': True, # False
  1995. 'time_limit_in_sec': 0,
  1996. 'max_itrs': 100,
  1997. 'max_itrs_without_update': 3,
  1998. 'epsilon_residual': 0.01,
  1999. 'epsilon_ec': 0.1,
  2000. 'verbose': 2}
  2001. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  2002. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  2003. kernel_options = {'name': 'ShortestPath',
  2004. 'edge_weight': None,
  2005. 'node_kernels': sub_kernels,
  2006. 'parallel': 'imap_unordered',
  2007. # 'parallel': None,
  2008. 'n_jobs': multiprocessing.cpu_count(),
  2009. 'normalize': True,
  2010. 'verbose': 2}
  2011. ged_options = {'method': 'IPFP',
  2012. 'initialization_method': 'RANDOM', # 'NODE'
  2013. 'initial_solutions': 10, # 1
  2014. 'edit_cost': 'LETTER2',
  2015. 'attr_distance': 'euclidean',
  2016. 'ratio_runs_from_initial_solutions': 1,
  2017. 'threads': multiprocessing.cpu_count(),
  2018. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  2019. mge_options = {'init_type': 'MEDOID',
  2020. 'random_inits': 10,
  2021. 'time_limit': 600,
  2022. 'verbose': 2,
  2023. 'update_order': False,
  2024. 'refine': False}
  2025. save_results = True
  2026. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  2027. irrelevant_labels = None #
  2028. edge_required = True #
  2029. # print settings.
  2030. file_output = open(dir_save + 'output.txt', 'a')
  2031. sys.stdout = file_output
  2032. print('parameters:')
  2033. print('dataset name:', ds_name)
  2034. print('mpg_options:', mpg_options)
  2035. print('kernel_options:', kernel_options)
  2036. print('ged_options:', ged_options)
  2037. print('mge_options:', mge_options)
  2038. print('save_results:', save_results)
  2039. print('irrelevant_labels:', irrelevant_labels)
  2040. print()
  2041. # generate preimages.
  2042. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  2043. print('\n-------------------------------------')
  2044. print('fit method:', fit_method, '\n')
  2045. mpg_options['fit_method'] = fit_method
  2046. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  2047. if __name__ == "__main__":
  2048. # #### xp 1_1: Letter-high, StructuralSP.
  2049. # # xp_median_preimage_1_1()
  2050. # #### xp 1_2: Letter-high, ShortestPath.
  2051. # # xp_median_preimage_1_2()
  2052. # #### xp 10_1: Letter-med, StructuralSP.
  2053. # # xp_median_preimage_10_1()
  2054. # #### xp 10_2: Letter-med, ShortestPath.
  2055. # # xp_median_preimage_10_2()
  2056. # #### xp 11_1: Letter-low, StructuralSP.
  2057. # # xp_median_preimage_11_1()
  2058. # #### xp 11_2: Letter-low, ShortestPath.
  2059. # # xp_median_preimage_11_2()
  2060. #
  2061. # #### xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
  2062. # # xp_median_preimage_2_1()
  2063. #
  2064. # #### xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
  2065. # # xp_median_preimage_3_1()
  2066. # #### xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
  2067. # xp_median_preimage_3_2()
  2068. # #### xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
  2069. # # xp_median_preimage_4_1()
  2070. #
  2071. # #### xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
  2072. # # xp_median_preimage_5_1()
  2073. #
  2074. # #### xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
  2075. # # xp_median_preimage_6_1()
  2076. # #### xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
  2077. # xp_median_preimage_6_2()
  2078. # #### xp 7_1: MUTAG, StructuralSP, using CONSTANT.
  2079. # # xp_median_preimage_7_1()
  2080. # #### xp 7_2: MUTAG, PathUpToH, using CONSTANT.
  2081. # xp_median_preimage_7_2()
  2082. # #### xp 7_3: MUTAG, Treelet, using CONSTANT.
  2083. # # xp_median_preimage_7_3()
  2084. # #### xp 7_4: MUTAG, WeisfeilerLehman, using CONSTANT.
  2085. # xp_median_preimage_7_4()
  2086. #
  2087. # #### xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
  2088. # # xp_median_preimage_8_1()
  2089. # #### xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
  2090. # # xp_median_preimage_8_2()
  2091. # #### xp 8_3: Monoterpenoides, Treelet, using CONSTANT.
  2092. # # xp_median_preimage_8_3()
  2093. # #### xp 8_4: Monoterpenoides, WeisfeilerLehman, using CONSTANT.
  2094. # xp_median_preimage_8_4()
  2095. # #### xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
  2096. # xp_median_preimage_9_1()
  2097. # #### xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
  2098. # xp_median_preimage_9_2()
  2099. # #### xp 9_3: MAO, Treelet, using CONSTANT, symbolic only.
  2100. # xp_median_preimage_9_3()
  2101. # #### xp 9_4: MAO, WeisfeilerLehman, using CONSTANT, symbolic only.
  2102. # xp_median_preimage_9_4()
  2103. #### xp 12_1: PAH, StructuralSP, using NON_SYMBOLIC, unlabeled.
  2104. # xp_median_preimage_12_1()
  2105. #### xp 12_2: PAH, PathUpToH, using CONSTANT, unlabeled.
  2106. # xp_median_preimage_12_2()
  2107. #### xp 12_3: PAH, Treelet, using CONSTANT, unlabeled.
  2108. # xp_median_preimage_12_3()
  2109. #### xp 12_4: PAH, WeisfeilerLehman, using CONSTANT, unlabeled.
  2110. # xp_median_preimage_12_4()
  2111. #### xp 12_5: PAH, ShortestPath, using NON_SYMBOLIC, unlabeled.
  2112. # xp_median_preimage_12_5()
  2113. #### xp 13_1: PAH, StructuralSP, using NON_SYMBOLIC.
  2114. # xp_median_preimage_13_1()
  2115. #### xp 13_2: PAH, ShortestPath, using NON_SYMBOLIC.
  2116. # xp_median_preimage_13_2()
  2117. #### xp 14_1: DD, PathUpToH, using CONSTANT.
  2118. xp_median_preimage_14_1()
  2119. # #### xp 1_1: Letter-high, StructuralSP.
  2120. # xp_median_preimage_1_1()
  2121. # #### xp 1_2: Letter-high, ShortestPath.
  2122. # xp_median_preimage_1_2()
  2123. # #### xp 10_1: Letter-med, StructuralSP.
  2124. # xp_median_preimage_10_1()
  2125. # #### xp 10_2: Letter-med, ShortestPath.
  2126. # xp_median_preimage_10_2()
  2127. # #### xp 11_1: Letter-low, StructuralSP.
  2128. # xp_median_preimage_11_1()
  2129. # #### xp 11_2: Letter-low, ShortestPath.
  2130. # xp_median_preimage_11_2()
  2131. #
  2132. # #### xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
  2133. # xp_median_preimage_2_1()
  2134. #
  2135. # #### xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
  2136. # xp_median_preimage_3_1()
  2137. # #### xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
  2138. # xp_median_preimage_3_2()
  2139. # #### xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
  2140. # # xp_median_preimage_4_1()
  2141. #
  2142. # #### xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
  2143. # # xp_median_preimage_5_1()
  2144. #
  2145. # #### xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
  2146. # xp_median_preimage_6_1()
  2147. # #### xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
  2148. # xp_median_preimage_6_2()
  2149. # #### xp 7_1: MUTAG, StructuralSP, using CONSTANT.
  2150. # xp_median_preimage_7_1()
  2151. # #### xp 7_2: MUTAG, PathUpToH, using CONSTANT.
  2152. # xp_median_preimage_7_2()
  2153. # #### xp 7_3: MUTAG, Treelet, using CONSTANT.
  2154. # xp_median_preimage_7_3()
  2155. # #### xp 7_4: MUTAG, WeisfeilerLehman, using CONSTANT.
  2156. # xp_median_preimage_7_4()
  2157. #
  2158. # #### xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
  2159. # xp_median_preimage_8_1()
  2160. # #### xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
  2161. # xp_median_preimage_8_2()
  2162. # #### xp 8_3: Monoterpenoides, Treelet, using CONSTANT.
  2163. # xp_median_preimage_8_3()
  2164. # #### xp 8_4: Monoterpenoides, WeisfeilerLehman, using CONSTANT.
  2165. # xp_median_preimage_8_4()
  2166. # #### xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
  2167. # xp_median_preimage_9_1()
  2168. # #### xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
  2169. # xp_median_preimage_9_2()
  2170. # #### xp 9_3: MAO, Treelet, using CONSTANT, symbolic only.
  2171. # xp_median_preimage_9_3()
  2172. # #### xp 9_4: MAO, WeisfeilerLehman, using CONSTANT, symbolic only.
  2173. # xp_median_preimage_9_4()
  2174. #### xp 12_1: PAH, StructuralSP, using NON_SYMBOLIC, unlabeled.
  2175. # xp_median_preimage_12_1()
  2176. #### xp 12_2: PAH, PathUpToH, using CONSTANT, unlabeled.
  2177. # xp_median_preimage_12_2()
  2178. #### xp 12_3: PAH, Treelet, using CONSTANT, unlabeled.
  2179. # xp_median_preimage_12_3()
  2180. #### xp 12_4: PAH, WeisfeilerLehman, using CONSTANT, unlabeled.
  2181. # xp_median_preimage_12_4()
  2182. #### xp 12_5: PAH, ShortestPath, using NON_SYMBOLIC, unlabeled.
  2183. # xp_median_preimage_12_5()
  2184. #### xp 13_1: PAH, StructuralSP, using NON_SYMBOLIC.
  2185. # xp_median_preimage_13_1()
  2186. #### xp 13_2: PAH, ShortestPath, using NON_SYMBOLIC.
  2187. # xp_median_preimage_13_2()

A Python package for graph kernels, graph edit distances and graph pre-image problem.