You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_commonwalkkernel.py 4.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Fri Sep 28 17:01:13 2018
  5. @author: ljia
  6. """
  7. import functools
  8. from libs import *
  9. import multiprocessing
  10. from sklearn.metrics.pairwise import rbf_kernel
  11. from pygraph.kernels.commonWalkKernel import commonwalkkernel
  12. from pygraph.utils.kernels import deltakernel, kernelproduct
  13. dslist = [
  14. {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds',
  15. 'task': 'regression'}, # node symb
  16. {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression',
  17. 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt', },
  18. # contains single node graph, node symb
  19. {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds', }, # node/edge symb
  20. {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds', }, # unlabeled
  21. {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat',
  22. 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}}, # node/edge symb
  23. {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},
  24. # node nsymb
  25. {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},
  26. # node symb/nsymb
  27. # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'},
  28. # # node/edge symb
  29. # {'name': 'D&D', 'dataset': '../datasets/D&D/DD.mat',
  30. # 'extra_params': {'am_sp_al_nl_el': [0, 1, 2, 1, -1]}}, # node symb
  31. # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb
  32. # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb
  33. # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb
  34. # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'},
  35. #
  36. # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb
  37. # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb
  38. # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb
  39. # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb
  40. # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb
  41. # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb
  42. # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb
  43. # # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb
  44. # {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat',
  45. # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb
  46. # {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat',
  47. # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb
  48. # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',
  49. # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb
  50. # # not working below
  51. # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},
  52. # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},
  53. # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},
  54. # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},
  55. ]
  56. estimator = commonwalkkernel
  57. mixkernel = functools.partial(kernelproduct, deltakernel, rbf_kernel)
  58. param_grid_precomputed = [{'compute_method': ['geo'],
  59. 'weight': np.logspace(0, -10, num=11, base=10)},
  60. {'compute_method': ['exp'], 'weight': range(0, 10)}]
  61. param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)},
  62. {'alpha': np.logspace(-10, 10, num=41, base=10)}]
  63. for ds in dslist:
  64. print()
  65. print(ds['name'])
  66. model_selection_for_precomputed_kernel(
  67. ds['dataset'],
  68. estimator,
  69. param_grid_precomputed,
  70. (param_grid[1] if ('task' in ds and ds['task']
  71. == 'regression') else param_grid[0]),
  72. (ds['task'] if 'task' in ds else 'classification'),
  73. NUM_TRIALS=30,
  74. datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
  75. extra_params=(ds['extra_params'] if 'extra_params' in ds else None),
  76. ds_name=ds['name'],
  77. n_jobs=multiprocessing.cpu_count(),
  78. read_gm_from_file=False)
  79. print()

A Python package for graph kernels, graph edit distances and graph pre-image problem.