You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataset.py 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Thu Mar 26 18:48:27 2020
  5. @author: ljia
  6. """
  7. import numpy as np
  8. import networkx as nx
  9. from gklearn.utils.graph_files import load_dataset
  10. import os
  11. class Dataset(object):
  12. def __init__(self, filename=None, filename_targets=None, **kwargs):
  13. if filename is None:
  14. self.__graphs = None
  15. self.__targets = None
  16. self.__node_labels = None
  17. self.__edge_labels = None
  18. self.__node_attrs = None
  19. self.__edge_attrs = None
  20. else:
  21. self.load_dataset(filename, filename_targets=filename_targets, **kwargs)
  22. self.__substructures = None
  23. self.__node_label_dim = None
  24. self.__edge_label_dim = None
  25. self.__directed = None
  26. self.__dataset_size = None
  27. self.__total_node_num = None
  28. self.__ave_node_num = None
  29. self.__min_node_num = None
  30. self.__max_node_num = None
  31. self.__total_edge_num = None
  32. self.__ave_edge_num = None
  33. self.__min_edge_num = None
  34. self.__max_edge_num = None
  35. self.__ave_node_degree = None
  36. self.__min_node_degree = None
  37. self.__max_node_degree = None
  38. self.__ave_fill_factor = None
  39. self.__min_fill_factor = None
  40. self.__max_fill_factor = None
  41. self.__node_label_nums = None
  42. self.__edge_label_nums = None
  43. self.__node_attr_dim = None
  44. self.__edge_attr_dim = None
  45. self.__class_number = None
  46. def load_dataset(self, filename, filename_targets=None, **kwargs):
  47. self.__graphs, self.__targets, label_names = load_dataset(filename, filename_targets=filename_targets, **kwargs)
  48. self.__node_labels = label_names['node_labels']
  49. self.__node_attrs = label_names['node_attrs']
  50. self.__edge_labels = label_names['edge_labels']
  51. self.__edge_attrs = label_names['edge_attrs']
  52. def load_graphs(self, graphs, targets=None):
  53. # this has to be followed by set_labels().
  54. self.__graphs = graphs
  55. self.__targets = targets
  56. # self.set_labels_attrs()
  57. def load_predefined_dataset(self, ds_name):
  58. current_path = os.path.dirname(os.path.realpath(__file__)) + '/'
  59. if ds_name == 'acyclic':
  60. pass
  61. elif ds_name == 'COIL-DEL':
  62. ds_file = current_path + '../../datasets/COIL-DEL/COIL-DEL_A.txt'
  63. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  64. elif ds_name == 'COIL-RAG':
  65. ds_file = current_path + '../../datasets/COIL-RAG/COIL-RAG_A.txt'
  66. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  67. elif ds_name == 'COLORS-3':
  68. ds_file = current_path + '../../datasets/COLORS-3/COLORS-3_A.txt'
  69. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  70. elif ds_name == 'Fingerprint':
  71. ds_file = current_path + '../../datasets/Fingerprint/Fingerprint_A.txt'
  72. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  73. elif ds_name == 'FRANKENSTEIN':
  74. ds_file = current_path + '../../datasets/FRANKENSTEIN/FRANKENSTEIN_A.txt'
  75. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  76. elif ds_name == 'Letter-high': # node non-symb
  77. ds_file = current_path + '../../datasets/Letter-high/Letter-high_A.txt'
  78. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  79. elif ds_name == 'Letter-low': # node non-symb
  80. ds_file = current_path + '../../datasets/Letter-high/Letter-low_A.txt'
  81. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  82. elif ds_name == 'Letter-med': # node non-symb
  83. ds_file = current_path + '../../datasets/Letter-high/Letter-med_A.txt'
  84. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  85. elif ds_name == 'MUTAG':
  86. ds_file = current_path + '../../datasets/MUTAG/MUTAG_A.txt'
  87. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  88. elif ds_name == 'SYNTHETIC':
  89. pass
  90. elif ds_name == 'SYNTHETICnew':
  91. ds_file = current_path + '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt'
  92. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  93. elif ds_name == 'Synthie':
  94. pass
  95. self.__node_labels = label_names['node_labels']
  96. self.__node_attrs = label_names['node_attrs']
  97. self.__edge_labels = label_names['edge_labels']
  98. self.__edge_attrs = label_names['edge_attrs']
  99. def set_labels(self, node_labels=[], node_attrs=[], edge_labels=[], edge_attrs=[]):
  100. self.__node_labels = node_labels
  101. self.__node_attrs = node_attrs
  102. self.__edge_labels = edge_labels
  103. self.__edge_attrs = edge_attrs
  104. def set_labels_attrs(self, node_labels=None, node_attrs=None, edge_labels=None, edge_attrs=None):
  105. # @todo: remove labels which have only one possible values.
  106. if node_labels is None:
  107. self.__node_labels = self.__graphs[0].graph['node_labels']
  108. # # graphs are considered node unlabeled if all nodes have the same label.
  109. # infos.update({'node_labeled': is_nl if node_label_num > 1 else False})
  110. if node_attrs is None:
  111. self.__node_attrs = self.__graphs[0].graph['node_attrs']
  112. # for G in Gn:
  113. # for n in G.nodes(data=True):
  114. # if 'attributes' in n[1]:
  115. # return len(n[1]['attributes'])
  116. # return 0
  117. if edge_labels is None:
  118. self.__edge_labels = self.__graphs[0].graph['edge_labels']
  119. # # graphs are considered edge unlabeled if all edges have the same label.
  120. # infos.update({'edge_labeled': is_el if edge_label_num > 1 else False})
  121. if edge_attrs is None:
  122. self.__edge_attrs = self.__graphs[0].graph['edge_attrs']
  123. # for G in Gn:
  124. # if nx.number_of_edges(G) > 0:
  125. # for e in G.edges(data=True):
  126. # if 'attributes' in e[2]:
  127. # return len(e[2]['attributes'])
  128. # return 0
  129. def get_dataset_infos(self, keys=None):
  130. """Computes and returns the structure and property information of the graph dataset.
  131. Parameters
  132. ----------
  133. keys : list
  134. List of strings which indicate which informations will be returned. The
  135. possible choices includes:
  136. 'substructures': sub-structures graphs contains, including 'linear', 'non
  137. linear' and 'cyclic'.
  138. 'node_label_dim': whether vertices have symbolic labels.
  139. 'edge_label_dim': whether egdes have symbolic labels.
  140. 'directed': whether graphs in dataset are directed.
  141. 'dataset_size': number of graphs in dataset.
  142. 'total_node_num': total number of vertices of all graphs in dataset.
  143. 'ave_node_num': average number of vertices of graphs in dataset.
  144. 'min_node_num': minimum number of vertices of graphs in dataset.
  145. 'max_node_num': maximum number of vertices of graphs in dataset.
  146. 'total_edge_num': total number of edges of all graphs in dataset.
  147. 'ave_edge_num': average number of edges of graphs in dataset.
  148. 'min_edge_num': minimum number of edges of graphs in dataset.
  149. 'max_edge_num': maximum number of edges of graphs in dataset.
  150. 'ave_node_degree': average vertex degree of graphs in dataset.
  151. 'min_node_degree': minimum vertex degree of graphs in dataset.
  152. 'max_node_degree': maximum vertex degree of graphs in dataset.
  153. 'ave_fill_factor': average fill factor (number_of_edges /
  154. (number_of_nodes ** 2)) of graphs in dataset.
  155. 'min_fill_factor': minimum fill factor of graphs in dataset.
  156. 'max_fill_factor': maximum fill factor of graphs in dataset.
  157. 'node_label_nums': list of numbers of symbolic vertex labels of graphs in dataset.
  158. 'edge_label_nums': list number of symbolic edge labels of graphs in dataset.
  159. 'node_attr_dim': number of dimensions of non-symbolic vertex labels.
  160. Extracted from the 'attributes' attribute of graph nodes.
  161. 'edge_attr_dim': number of dimensions of non-symbolic edge labels.
  162. Extracted from the 'attributes' attribute of graph edges.
  163. 'class_number': number of classes. Only available for classification problems.
  164. All informations above will be returned if `keys` is not given.
  165. Return
  166. ------
  167. dict
  168. Information of the graph dataset keyed by `keys`.
  169. """
  170. infos = {}
  171. if keys == None:
  172. keys = [
  173. 'substructures',
  174. 'node_label_dim',
  175. 'edge_label_dim',
  176. 'directed',
  177. 'dataset_size',
  178. 'total_node_num',
  179. 'ave_node_num',
  180. 'min_node_num',
  181. 'max_node_num',
  182. 'total_edge_num',
  183. 'ave_edge_num',
  184. 'min_edge_num',
  185. 'max_edge_num',
  186. 'ave_node_degree',
  187. 'min_node_degree',
  188. 'max_node_degree',
  189. 'ave_fill_factor',
  190. 'min_fill_factor',
  191. 'max_fill_factor',
  192. 'node_label_nums',
  193. 'edge_label_nums',
  194. 'node_attr_dim',
  195. 'edge_attr_dim',
  196. 'class_number',
  197. ]
  198. # dataset size
  199. if 'dataset_size' in keys:
  200. if self.__dataset_size is None:
  201. self.__dataset_size = self.__get_dataset_size()
  202. infos['dataset_size'] = self.__dataset_size
  203. # graph node number
  204. if any(i in keys for i in ['total_node_num', 'ave_node_num', 'min_node_num', 'max_node_num']):
  205. all_node_nums = self.__get_all_node_nums()
  206. if 'total_node_num' in keys:
  207. if self.__total_node_num is None:
  208. self.__total_node_num = self.__get_total_node_num(all_node_nums)
  209. infos['total_node_num'] = self.__total_node_num
  210. if 'ave_node_num' in keys:
  211. if self.__ave_node_num is None:
  212. self.__ave_node_num = self.__get_ave_node_num(all_node_nums)
  213. infos['ave_node_num'] = self.__ave_node_num
  214. if 'min_node_num' in keys:
  215. if self.__min_node_num is None:
  216. self.__min_node_num = self.__get_min_node_num(all_node_nums)
  217. infos['min_node_num'] = self.__min_node_num
  218. if 'max_node_num' in keys:
  219. if self.__max_node_num is None:
  220. self.__max_node_num = self.__get_max_node_num(all_node_nums)
  221. infos['max_node_num'] = self.__max_node_num
  222. # graph edge number
  223. if any(i in keys for i in ['total_edge_num', 'ave_edge_num', 'min_edge_num', 'max_edge_num']):
  224. all_edge_nums = self.__get_all_edge_nums()
  225. if 'total_edge_num' in keys:
  226. if self.__total_edge_num is None:
  227. self.__total_edge_num = self.__get_total_edge_num(all_edge_nums)
  228. infos['total_edge_num'] = self.__total_edge_num
  229. if 'ave_edge_num' in keys:
  230. if self.__ave_edge_num is None:
  231. self.__ave_edge_num = self.__get_ave_edge_num(all_edge_nums)
  232. infos['ave_edge_num'] = self.__ave_edge_num
  233. if 'max_edge_num' in keys:
  234. if self.__max_edge_num is None:
  235. self.__max_edge_num = self.__get_max_edge_num(all_edge_nums)
  236. infos['max_edge_num'] = self.__max_edge_num
  237. if 'min_edge_num' in keys:
  238. if self.__min_edge_num is None:
  239. self.__min_edge_num = self.__get_min_edge_num(all_edge_nums)
  240. infos['min_edge_num'] = self.__min_edge_num
  241. # label number
  242. if 'node_label_dim' in keys:
  243. if self.__node_label_dim is None:
  244. self.__node_label_dim = self.__get_node_label_dim()
  245. infos['node_label_dim'] = self.__node_label_dim
  246. if 'node_label_nums' in keys:
  247. if self.__node_label_nums is None:
  248. self.__node_label_nums = {}
  249. for node_label in self.__node_labels:
  250. self.__node_label_nums[node_label] = self.get_node_label_num(node_label)
  251. infos['node_label_nums'] = self.__node_label_nums
  252. if 'edge_label_dim' in keys:
  253. if self.__edge_label_dim is None:
  254. self.__edge_label_dim = self.__get_edge_label_dim()
  255. infos['edge_label_dim'] = self.__edge_label_dim
  256. if 'edge_label_nums' in keys:
  257. if self.__edge_label_nums is None:
  258. self.__edge_label_nums = {}
  259. for edge_label in self.__edge_labels:
  260. self.__edge_label_nums[edge_label] = self.get_edge_label_num(edge_label)
  261. infos['edge_label_nums'] = self.__edge_label_nums
  262. if 'directed' in keys or 'substructures' in keys:
  263. if self.__directed is None:
  264. self.__directed = self.__is_directed()
  265. infos['directed'] = self.__directed
  266. # node degree
  267. if any(i in keys for i in ['ave_node_degree', 'max_node_degree', 'min_node_degree']):
  268. all_node_degrees = self.__get_all_node_degrees()
  269. if 'ave_node_degree' in keys:
  270. if self.__ave_node_degree is None:
  271. self.__ave_node_degree = self.__get_ave_node_degree(all_node_degrees)
  272. infos['ave_node_degree'] = self.__ave_node_degree
  273. if 'max_node_degree' in keys:
  274. if self.__max_node_degree is None:
  275. self.__max_node_degree = self.__get_max_node_degree(all_node_degrees)
  276. infos['max_node_degree'] = self.__max_node_degree
  277. if 'min_node_degree' in keys:
  278. if self.__min_node_degree is None:
  279. self.__min_node_degree = self.__get_min_node_degree(all_node_degrees)
  280. infos['min_node_degree'] = self.__min_node_degree
  281. # fill factor
  282. if any(i in keys for i in ['ave_fill_factor', 'max_fill_factor', 'min_fill_factor']):
  283. all_fill_factors = self.__get_all_fill_factors()
  284. if 'ave_fill_factor' in keys:
  285. if self.__ave_fill_factor is None:
  286. self.__ave_fill_factor = self.__get_ave_fill_factor(all_fill_factors)
  287. infos['ave_fill_factor'] = self.__ave_fill_factor
  288. if 'max_fill_factor' in keys:
  289. if self.__max_fill_factor is None:
  290. self.__max_fill_factor = self.__get_max_fill_factor(all_fill_factors)
  291. infos['max_fill_factor'] = self.__max_fill_factor
  292. if 'min_fill_factor' in keys:
  293. if self.__min_fill_factor is None:
  294. self.__min_fill_factor = self.__get_min_fill_factor(all_fill_factors)
  295. infos['min_fill_factor'] = self.__min_fill_factor
  296. if 'substructures' in keys:
  297. if self.__substructures is None:
  298. self.__substructures = self.__get_substructures()
  299. infos['substructures'] = self.__substructures
  300. if 'class_number' in keys:
  301. if self.__class_number is None:
  302. self.__class_number = self.__get_class_number()
  303. infos['class_number'] = self.__class_number
  304. if 'node_attr_dim' in keys:
  305. if self.__node_attr_dim is None:
  306. self.__node_attr_dim = self.__get_node_attr_dim()
  307. infos['node_attr_dim'] = self.__node_attr_dim
  308. if 'edge_attr_dim' in keys:
  309. if self.__edge_attr_dim is None:
  310. self.__edge_attr_dim = self.__get_edge_attr_dim()
  311. infos['edge_attr_dim'] = self.__edge_attr_dim
  312. return infos
  313. def print_graph_infos(self, infos):
  314. from collections import OrderedDict
  315. keys = list(infos.keys())
  316. print(OrderedDict(sorted(infos.items(), key=lambda i: keys.index(i[0]))))
  317. def remove_labels(self, node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]):
  318. for g in self.__graphs:
  319. for nd in g.nodes():
  320. for nl in node_labels:
  321. del g.nodes[nd][nl]
  322. for na in node_attrs:
  323. del g.nodes[nd][na]
  324. for ed in g.edges():
  325. for el in edge_labels:
  326. del g.edges[ed][el]
  327. for ea in edge_attrs:
  328. del g.edges[ed][ea]
  329. if len(node_labels) > 0:
  330. self.__node_labels = [nl for nl in self.__node_labels if nl not in node_labels]
  331. if len(edge_labels) > 0:
  332. self.__edge_labels = [el for el in self.__edge_labels if el not in edge_labels]
  333. if len(node_attrs) > 0:
  334. self.__node_attrs = [na for na in self.__node_attrs if na not in node_attrs]
  335. if len(edge_attrs) > 0:
  336. self.__edge_attrs = [ea for ea in self.__edge_attrs if ea not in edge_attrs]
  337. def cut_graphs(self, range_):
  338. self.__graphs = [self.__graphs[i] for i in range_]
  339. if self.__targets is not None:
  340. self.__targets = [self.__targets[i] for i in range_]
  341. # @todo
  342. # self.set_labels_attrs()
  343. def trim_dataset(self, edge_required=False):
  344. if edge_required:
  345. trimed_pairs = [(idx, g) for idx, g in enumerate(self.__graphs) if (nx.number_of_nodes(g) != 0 and nx.number_of_edges(g) != 0)]
  346. else:
  347. trimed_pairs = [(idx, g) for idx, g in enumerate(self.__graphs) if nx.number_of_nodes(g) != 0]
  348. idx = [p[0] for p in trimed_pairs]
  349. self.__graphs = [p[1] for p in trimed_pairs]
  350. self.__targets = [self.__targets[i] for i in idx]
  351. # @todo
  352. # self.set_labels_attrs()
  353. def __get_dataset_size(self):
  354. return len(self.__graphs)
  355. def __get_all_node_nums(self):
  356. return [nx.number_of_nodes(G) for G in self.__graphs]
  357. def __get_total_node_nums(self, all_node_nums):
  358. return np.sum(all_node_nums)
  359. def __get_ave_node_num(self, all_node_nums):
  360. return np.mean(all_node_nums)
  361. def __get_min_node_num(self, all_node_nums):
  362. return np.amin(all_node_nums)
  363. def __get_max_node_num(self, all_node_nums):
  364. return np.amax(all_node_nums)
  365. def __get_all_edge_nums(self):
  366. return [nx.number_of_edges(G) for G in self.__graphs]
  367. def __get_total_edge_nums(self, all_edge_nums):
  368. return np.sum(all_edge_nums)
  369. def __get_ave_edge_num(self, all_edge_nums):
  370. return np.mean(all_edge_nums)
  371. def __get_min_edge_num(self, all_edge_nums):
  372. return np.amin(all_edge_nums)
  373. def __get_max_edge_num(self, all_edge_nums):
  374. return np.amax(all_edge_nums)
  375. def __get_node_label_dim(self):
  376. return len(self.__node_labels)
  377. def __get_node_label_num(self, node_label):
  378. nl = set()
  379. for G in self.__graphs:
  380. nl = nl | set(nx.get_node_attributes(G, node_label).values())
  381. return len(nl)
  382. def __get_edge_label_dim(self):
  383. return len(self.__edge_labels)
  384. def __get_edge_label_num(self, edge_label):
  385. el = set()
  386. for G in self.__graphs:
  387. el = el | set(nx.get_edge_attributes(G, edge_label).values())
  388. return len(el)
  389. def __is_directed(self):
  390. return nx.is_directed(self.__graphs[0])
  391. def __get_all_node_degrees(self):
  392. return [np.mean(list(dict(G.degree()).values())) for G in self.__graphs]
  393. def __get_ave_node_degree(self, all_node_degrees):
  394. return np.mean(all_node_degrees)
  395. def __get_max_node_degree(self, all_node_degrees):
  396. return np.amax(all_node_degrees)
  397. def __get_min_node_degree(self, all_node_degrees):
  398. return np.amin(all_node_degrees)
  399. def __get_all_fill_factors(self):
  400. """
  401. Get fill factor, the number of non-zero entries in the adjacency matrix.
  402. Returns
  403. -------
  404. list[float]
  405. List of fill factors for all graphs.
  406. """
  407. return [nx.number_of_edges(G) / (nx.number_of_nodes(G) ** 2) for G in self.__graphs]
  408. def __get_ave_fill_factor(self, all_fill_factors):
  409. return np.mean(all_fill_factors)
  410. def __get_max_fill_factor(self, all_fill_factors):
  411. return np.amax(all_fill_factors)
  412. def __get_min_fill_factor(self, all_fill_factors):
  413. return np.amin(all_fill_factors)
  414. def __get_substructures(self):
  415. subs = set()
  416. for G in self.__graphs:
  417. degrees = list(dict(G.degree()).values())
  418. if any(i == 2 for i in degrees):
  419. subs.add('linear')
  420. if np.amax(degrees) >= 3:
  421. subs.add('non linear')
  422. if 'linear' in subs and 'non linear' in subs:
  423. break
  424. if self.__directed:
  425. for G in self.__graphs:
  426. if len(list(nx.find_cycle(G))) > 0:
  427. subs.add('cyclic')
  428. break
  429. # else:
  430. # # @todo: this method does not work for big graph with large amount of edges like D&D, try a better way.
  431. # upper = np.amin([nx.number_of_edges(G) for G in Gn]) * 2 + 10
  432. # for G in Gn:
  433. # if (nx.number_of_edges(G) < upper):
  434. # cyc = list(nx.simple_cycles(G.to_directed()))
  435. # if any(len(i) > 2 for i in cyc):
  436. # subs.add('cyclic')
  437. # break
  438. # if 'cyclic' not in subs:
  439. # for G in Gn:
  440. # cyc = list(nx.simple_cycles(G.to_directed()))
  441. # if any(len(i) > 2 for i in cyc):
  442. # subs.add('cyclic')
  443. # break
  444. return subs
  445. def __get_class_num(self):
  446. return len(set(self.__targets))
  447. def __get_node_attr_dim(self):
  448. return len(self.__node_attrs)
  449. def __get_edge_attr_dim(self):
  450. return len(self.__edge_attrs)
  451. @property
  452. def graphs(self):
  453. return self.__graphs
  454. @property
  455. def targets(self):
  456. return self.__targets
  457. @property
  458. def node_labels(self):
  459. return self.__node_labels
  460. @property
  461. def edge_labels(self):
  462. return self.__edge_labels
  463. @property
  464. def node_attrs(self):
  465. return self.__node_attrs
  466. @property
  467. def edge_attrs(self):
  468. return self.__edge_attrs
  469. def split_dataset_by_target(dataset):
  470. from gklearn.preimage.utils import get_same_item_indices
  471. graphs = dataset.graphs
  472. targets = dataset.targets
  473. datasets = []
  474. idx_targets = get_same_item_indices(targets)
  475. for key, val in idx_targets.items():
  476. sub_graphs = [graphs[i] for i in val]
  477. sub_dataset = Dataset()
  478. sub_dataset.load_graphs(sub_graphs, [key] * len(val))
  479. sub_dataset.set_labels(node_labels=dataset.node_labels, node_attrs=dataset.node_attrs, edge_labels=dataset.edge_labels, edge_attrs=dataset.edge_attrs)
  480. datasets.append(sub_dataset)
  481. return datasets

A Python package for graph kernels, graph edit distances and graph pre-image problem.