You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

random_preimage_generator.py 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Fri May 29 14:29:52 2020
  5. @author: ljia
  6. """
  7. import numpy as np
  8. import time
  9. import sys
  10. from tqdm import tqdm
  11. import multiprocessing
  12. import networkx as nx
  13. from multiprocessing import Pool
  14. from functools import partial
  15. from gklearn.preimage import PreimageGenerator
  16. from gklearn.preimage.utils import compute_k_dis
  17. from gklearn.utils import Timer
  18. from gklearn.utils.utils import get_graph_kernel_by_name
  19. # from gklearn.utils.dataset import Dataset
  20. class RandomPreimageGenerator(PreimageGenerator):
  21. def __init__(self, dataset=None):
  22. PreimageGenerator.__init__(self, dataset=dataset)
  23. # arguments to set.
  24. self.__k = 5 # number of nearest neighbors of phi in D_N.
  25. self.__r_max = 10 # maximum number of iterations.
  26. self.__l = 500 # numbers of graphs generated for each graph in D_k U {g_i_hat}.
  27. self.__alphas = None # weights of linear combinations of points in kernel space.
  28. self.__parallel = True
  29. self.__n_jobs = multiprocessing.cpu_count()
  30. self.__time_limit_in_sec = 0 # @todo
  31. self.__max_itrs = 100 # @todo
  32. # values to compute.
  33. self.__runtime_generate_preimage = None
  34. self.__runtime_total = None
  35. self.__preimage = None
  36. self.__best_from_dataset = None
  37. self.__k_dis_preimage = None
  38. self.__k_dis_dataset = None
  39. self.__itrs = 0
  40. self.__converged = False # @todo
  41. self.__num_updates = 0
  42. # values that can be set or to be computed.
  43. self.__gram_matrix_unnorm = None
  44. self.__runtime_precompute_gm = None
  45. def set_options(self, **kwargs):
  46. self._kernel_options = kwargs.get('kernel_options', {})
  47. self._graph_kernel = kwargs.get('graph_kernel', None)
  48. self._verbose = kwargs.get('verbose', 2)
  49. self.__k = kwargs.get('k', 5)
  50. self.__r_max = kwargs.get('r_max', 10)
  51. self.__l = kwargs.get('l', 500)
  52. self.__alphas = kwargs.get('alphas', None)
  53. self.__parallel = kwargs.get('parallel', True)
  54. self.__n_jobs = kwargs.get('n_jobs', multiprocessing.cpu_count())
  55. self.__time_limit_in_sec = kwargs.get('time_limit_in_sec', 0)
  56. self.__max_itrs = kwargs.get('max_itrs', 100)
  57. self.__gram_matrix_unnorm = kwargs.get('gram_matrix_unnorm', None)
  58. self.__runtime_precompute_gm = kwargs.get('runtime_precompute_gm', None)
  59. def run(self):
  60. self._graph_kernel = get_graph_kernel_by_name(self._kernel_options['name'],
  61. node_labels=self._dataset.node_labels,
  62. edge_labels=self._dataset.edge_labels,
  63. node_attrs=self._dataset.node_attrs,
  64. edge_attrs=self._dataset.edge_attrs,
  65. ds_infos=self._dataset.get_dataset_infos(keys=['directed']),
  66. kernel_options=self._kernel_options)
  67. # record start time.
  68. start = time.time()
  69. # 1. precompute gram matrix.
  70. if self.__gram_matrix_unnorm is None:
  71. gram_matrix, run_time = self._graph_kernel.compute(self._dataset.graphs, **self._kernel_options)
  72. self.__gram_matrix_unnorm = self._graph_kernel.gram_matrix_unnorm
  73. end_precompute_gm = time.time()
  74. self.__runtime_precompute_gm = end_precompute_gm - start
  75. else:
  76. if self.__runtime_precompute_gm is None:
  77. raise Exception('Parameter "runtime_precompute_gm" must be given when using pre-computed Gram matrix.')
  78. self._graph_kernel.gram_matrix_unnorm = self.__gram_matrix_unnorm
  79. if self._kernel_options['normalize']:
  80. self._graph_kernel.gram_matrix = self._graph_kernel.normalize_gm(np.copy(self.__gram_matrix_unnorm))
  81. else:
  82. self._graph_kernel.gram_matrix = np.copy(self.__gram_matrix_unnorm)
  83. end_precompute_gm = time.time()
  84. start -= self.__runtime_precompute_gm
  85. # 2. compute k nearest neighbors of phi in D_N.
  86. if self._verbose >= 2:
  87. print('\nstart computing k nearest neighbors of phi in D_N...\n')
  88. D_N = self._dataset.graphs
  89. if self.__alphas is None:
  90. self.__alphas = [1 / len(D_N)] * len(D_N)
  91. k_dis_list = [] # distance between g_star and each graph.
  92. term3 = 0
  93. for i1, a1 in enumerate(self.__alphas):
  94. for i2, a2 in enumerate(self.__alphas):
  95. term3 += a1 * a2 * self._graph_kernel.gram_matrix[i1, i2]
  96. for idx in range(len(D_N)):
  97. k_dis_list.append(compute_k_dis(idx, range(0, len(D_N)), self.__alphas, self._graph_kernel.gram_matrix, term3=term3, withterm3=True))
  98. # sort.
  99. sort_idx = np.argsort(k_dis_list)
  100. dis_gs = [k_dis_list[idis] for idis in sort_idx[0:self.__k]] # the k shortest distances.
  101. nb_best = len(np.argwhere(dis_gs == dis_gs[0]).flatten().tolist())
  102. g0hat_list = [D_N[idx].copy() for idx in sort_idx[0:nb_best]] # the nearest neighbors of phi in D_N
  103. self.__best_from_dataset = g0hat_list[0] # get the first best graph if there are muitlple.
  104. self.__k_dis_dataset = dis_gs[0]
  105. if self.__k_dis_dataset == 0: # get the exact pre-image.
  106. end_generate_preimage = time.time()
  107. self.__runtime_generate_preimage = end_generate_preimage - end_precompute_gm
  108. self.__runtime_total = end_generate_preimage - start
  109. self.__preimage = self.__best_from_dataset.copy()
  110. self.__k_dis_preimage = self.__k_dis_dataset
  111. if self._verbose:
  112. print()
  113. print('=============================================================================')
  114. print('The exact pre-image is found from the input dataset.')
  115. print('-----------------------------------------------------------------------------')
  116. print('Distance in kernel space for the best graph from dataset and for preimage:', self.__k_dis_dataset)
  117. print('Time to pre-compute Gram matrix:', self.__runtime_precompute_gm)
  118. print('Time to generate pre-images:', self.__runtime_generate_preimage)
  119. print('Total time:', self.__runtime_total)
  120. print('=============================================================================')
  121. print()
  122. return
  123. dhat = dis_gs[0] # the nearest distance
  124. Gk = [D_N[ig].copy() for ig in sort_idx[0:self.__k]] # the k nearest neighbors
  125. Gs_nearest = [nx.convert_node_labels_to_integers(g) for g in Gk] # [g.copy() for g in Gk]
  126. # 3. start iterations.
  127. if self._verbose >= 2:
  128. print('starting iterations...')
  129. gihat_list = []
  130. dihat_list = []
  131. r = 0
  132. dis_of_each_itr = [dhat]
  133. if self.__parallel:
  134. self._kernel_options['parallel'] = None
  135. while r < self.__r_max:
  136. print('\n- r =', r)
  137. found = False
  138. dis_bests = dis_gs + dihat_list
  139. # compute numbers of edges to be inserted/deleted.
  140. # @todo what if the log is negetive? how to choose alpha (scalar)?
  141. fdgs_list = np.array(dis_bests)
  142. if np.min(fdgs_list) < 1: # in case the log is negetive.
  143. fdgs_list /= np.min(fdgs_list)
  144. fdgs_list = [int(item) for item in np.ceil(np.log(fdgs_list))]
  145. if np.min(fdgs_list) < 1: # in case the log is smaller than 1.
  146. fdgs_list = np.array(fdgs_list) + 1
  147. # expand the number of modifications to increase the possiblity.
  148. nb_vpairs_list = [nx.number_of_nodes(g) * (nx.number_of_nodes(g) - 1) for g in (Gs_nearest + gihat_list)]
  149. nb_vpairs_min = np.min(nb_vpairs_list)
  150. idx_fdgs_max = np.argmax(fdgs_list)
  151. fdgs_max_old = fdgs_list[idx_fdgs_max]
  152. fdgs_max = fdgs_max_old
  153. nb_modif = 1
  154. for idx, nb in enumerate(range(nb_vpairs_min, nb_vpairs_min - fdgs_max, -1)):
  155. nb_modif *= nb / (fdgs_max - idx)
  156. while fdgs_max < nb_vpairs_min and nb_modif < self.__l:
  157. fdgs_max += 1
  158. nb_modif *= (nb_vpairs_min - fdgs_max + 1) / fdgs_max
  159. nb_increase = int(fdgs_max - fdgs_max_old)
  160. if nb_increase > 0:
  161. fdgs_list += 1
  162. for ig, gs in enumerate(Gs_nearest + gihat_list):
  163. if self._verbose >= 2:
  164. print('-- computing', ig + 1, 'graphs out of', len(Gs_nearest) + len(gihat_list))
  165. gnew, dhat, found = self.__generate_l_graphs(gs, fdgs_list[ig], dhat, ig, found, term3)
  166. if found:
  167. r = 0
  168. gihat_list = [gnew]
  169. dihat_list = [dhat]
  170. else:
  171. r += 1
  172. dis_of_each_itr.append(dhat)
  173. self.__itrs += 1
  174. if self._verbose >= 2:
  175. print('Total number of iterations is', self.__itrs, '.')
  176. print('The preimage is updated', self.__num_updates, 'times.')
  177. print('The shortest distances for previous iterations are', dis_of_each_itr, '.')
  178. # get results and print.
  179. end_generate_preimage = time.time()
  180. self.__runtime_generate_preimage = end_generate_preimage - end_precompute_gm
  181. self.__runtime_total = end_generate_preimage - start
  182. self.__preimage = (g0hat_list[0] if len(gihat_list) == 0 else gihat_list[0])
  183. self.__k_dis_preimage = dhat
  184. if self._verbose:
  185. print()
  186. print('=============================================================================')
  187. print('Finished generalization of preimages.')
  188. print('-----------------------------------------------------------------------------')
  189. print('Distance in kernel space for the best graph from dataset:', self.__k_dis_dataset)
  190. print('Distance in kernel space for the preimage:', self.__k_dis_preimage)
  191. print('Total number of iterations for optimizing:', self.__itrs)
  192. print('Total number of updating preimage:', self.__num_updates)
  193. print('Time to pre-compute Gram matrix:', self.__runtime_precompute_gm)
  194. print('Time to generate pre-images:', self.__runtime_generate_preimage)
  195. print('Total time:', self.__runtime_total)
  196. print('=============================================================================')
  197. print()
  198. def __generate_l_graphs(self, g_init, fdgs, dhat, ig, found, term3):
  199. if self.__parallel:
  200. gnew, dhat, found = self.__generate_l_graphs_parallel(g_init, fdgs, dhat, ig, found, term3)
  201. else:
  202. gnew, dhat, found = self.__generate_l_graphs_series(g_init, fdgs, dhat, ig, found, term3)
  203. return gnew, dhat, found
  204. def __generate_l_graphs_series(self, g_init, fdgs, dhat, ig, found, term3):
  205. gnew = None
  206. updated = False
  207. for trial in range(0, self.__l):
  208. if self._verbose >= 2:
  209. print('---', trial + 1, 'trial out of', self.__l)
  210. gtemp, dnew = self.__do_trial(g_init, fdgs, term3, trial)
  211. # get the better graph preimage.
  212. if dnew <= dhat: # @todo: the new distance is smaller or also equal?
  213. if dnew < dhat:
  214. if self._verbose >= 2:
  215. print('trial =', str(trial))
  216. print('\nI am smaller!')
  217. print('index (as in D_k U {gihat} =', str(ig))
  218. print('distance:', dhat, '->', dnew)
  219. updated = True
  220. elif dnew == dhat:
  221. if self._verbose >= 2:
  222. print('I am equal!')
  223. dhat = dnew
  224. gnew = gtemp.copy()
  225. found = True # found better or equally good graph.
  226. if updated:
  227. self.__num_updates += 1
  228. return gnew, dhat, found
  229. def __generate_l_graphs_parallel(self, g_init, fdgs, dhat, ig, found, term3):
  230. gnew = None
  231. len_itr = self.__l
  232. gnew_list = [None] * len_itr
  233. dnew_list = [None] * len_itr
  234. itr = range(0, len_itr)
  235. n_jobs = multiprocessing.cpu_count()
  236. if len_itr < 100 * n_jobs:
  237. chunksize = int(len_itr / n_jobs) + 1
  238. else:
  239. chunksize = 100
  240. do_fun = partial(self._generate_graph_parallel, g_init, fdgs, term3)
  241. pool = Pool(processes=n_jobs)
  242. if self._verbose >= 2:
  243. iterator = tqdm(pool.imap_unordered(do_fun, itr, chunksize),
  244. desc='Generating l graphs', file=sys.stdout)
  245. else:
  246. iterator = pool.imap_unordered(do_fun, itr, chunksize)
  247. for idx, gnew, dnew in iterator:
  248. gnew_list[idx] = gnew
  249. dnew_list[idx] = dnew
  250. pool.close()
  251. pool.join()
  252. # check if get the better graph preimage.
  253. idx_min = np.argmin(dnew_list)
  254. dnew = dnew_list[idx_min]
  255. if dnew <= dhat: # @todo: the new distance is smaller or also equal?
  256. if dnew < dhat:
  257. if self._verbose >= 2:
  258. print('\nI am smaller!')
  259. print('index (as in D_k U {gihat} =', str(ig))
  260. print('distance:', dhat, '->', dnew)
  261. self.__num_updates += 1
  262. elif dnew == dhat:
  263. if self._verbose >= 2:
  264. print('I am equal!')
  265. dhat = dnew
  266. gnew = gnew_list[idx_min]
  267. found = True # found better graph.
  268. return gnew, dhat, found
  269. def _generate_graph_parallel(self, g_init, fdgs, term3, itr):
  270. trial = itr
  271. gtemp, dnew = self.__do_trial(g_init, fdgs, term3, trial)
  272. return trial, gtemp, dnew
  273. def __do_trial(self, g_init, fdgs, term3, trial):
  274. # add and delete edges.
  275. gtemp = g_init.copy()
  276. seed = (trial + int(time.time())) % (2 ** 32 - 1)
  277. rdm_state = np.random.RandomState(seed=seed)
  278. # which edges to change.
  279. # @todo: should we use just half of the adjacency matrix for undirected graphs?
  280. nb_vpairs = nx.number_of_nodes(g_init) * (nx.number_of_nodes(g_init) - 1)
  281. # @todo: what if fdgs is bigger than nb_vpairs?
  282. idx_change = rdm_state.randint(0, high=nb_vpairs, size=(fdgs if
  283. fdgs < nb_vpairs else nb_vpairs))
  284. # print(idx_change)
  285. for item in idx_change:
  286. node1 = int(item / (nx.number_of_nodes(g_init) - 1))
  287. node2 = (item - node1 * (nx.number_of_nodes(g_init) - 1))
  288. if node2 >= node1: # skip the self pair.
  289. node2 += 1
  290. # @todo: is the randomness correct?
  291. if not gtemp.has_edge(node1, node2):
  292. gtemp.add_edge(node1, node2)
  293. else:
  294. gtemp.remove_edge(node1, node2)
  295. # compute new distances.
  296. kernels_to_gtmp, _ = self._graph_kernel.compute(gtemp, self._dataset.graphs, **self._kernel_options)
  297. kernel_gtmp, _ = self._graph_kernel.compute(gtemp, gtemp, **self._kernel_options)
  298. kernels_to_gtmp = [kernels_to_gtmp[i] / np.sqrt(self.__gram_matrix_unnorm[i, i] * kernel_gtmp) for i in range(len(kernels_to_gtmp))] # normalize
  299. # @todo: not correct kernel value
  300. gram_with_gtmp = np.concatenate((np.array([kernels_to_gtmp]), np.copy(self._graph_kernel.gram_matrix)), axis=0)
  301. gram_with_gtmp = np.concatenate((np.array([[1] + kernels_to_gtmp]).T, gram_with_gtmp), axis=1)
  302. dnew = compute_k_dis(0, range(1, 1 + len(self._dataset.graphs)), self.__alphas, gram_with_gtmp, term3=term3, withterm3=True)
  303. return gtemp, dnew
  304. def get_results(self):
  305. results = {}
  306. results['runtime_precompute_gm'] = self.__runtime_precompute_gm
  307. results['runtime_generate_preimage'] = self.__runtime_generate_preimage
  308. results['runtime_total'] = self.__runtime_total
  309. results['k_dis_dataset'] = self.__k_dis_dataset
  310. results['k_dis_preimage'] = self.__k_dis_preimage
  311. results['itrs'] = self.__itrs
  312. results['num_updates'] = self.__num_updates
  313. return results
  314. def __termination_criterion_met(self, converged, timer, itr, itrs_without_update):
  315. if timer.expired() or (itr >= self.__max_itrs if self.__max_itrs >= 0 else False):
  316. # if self.__state == AlgorithmState.TERMINATED:
  317. # self.__state = AlgorithmState.INITIALIZED
  318. return True
  319. return converged or (itrs_without_update > self.__max_itrs_without_update if self.__max_itrs_without_update >= 0 else False)
  320. @property
  321. def preimage(self):
  322. return self.__preimage
  323. @property
  324. def best_from_dataset(self):
  325. return self.__best_from_dataset
  326. @property
  327. def gram_matrix_unnorm(self):
  328. return self.__gram_matrix_unnorm
  329. @gram_matrix_unnorm.setter
  330. def gram_matrix_unnorm(self, value):
  331. self.__gram_matrix_unnorm = value

A Python package for graph kernels, graph edit distances and graph pre-image problem.