You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataset.py 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Thu Mar 26 18:48:27 2020
  5. @author: ljia
  6. """
  7. import numpy as np
  8. import networkx as nx
  9. from gklearn.utils.graphfiles import loadDataset
  10. import os
  11. class Dataset(object):
  12. def __init__(self, filename=None, filename_y=None, extra_params=None):
  13. if filename is None:
  14. self.__graphs = None
  15. self.__targets = None
  16. self.__node_labels = None
  17. self.__edge_labels = None
  18. self.__node_attrs = None
  19. self.__edge_attrs = None
  20. else:
  21. self.load_dataset(filename, filename_y=filename_y, extra_params=extra_params)
  22. self.__substructures = None
  23. self.__node_label_dim = None
  24. self.__edge_label_dim = None
  25. self.__directed = None
  26. self.__dataset_size = None
  27. self.__total_node_num = None
  28. self.__ave_node_num = None
  29. self.__min_node_num = None
  30. self.__max_node_num = None
  31. self.__total_edge_num = None
  32. self.__ave_edge_num = None
  33. self.__min_edge_num = None
  34. self.__max_edge_num = None
  35. self.__ave_node_degree = None
  36. self.__min_node_degree = None
  37. self.__max_node_degree = None
  38. self.__ave_fill_factor = None
  39. self.__min_fill_factor = None
  40. self.__max_fill_factor = None
  41. self.__node_label_nums = None
  42. self.__edge_label_nums = None
  43. self.__node_attr_dim = None
  44. self.__edge_attr_dim = None
  45. self.__class_number = None
  46. def load_dataset(self, filename, filename_y=None, extra_params=None):
  47. self.__graphs, self.__targets = loadDataset(filename, filename_y=filename_y, extra_params=extra_params)
  48. self.set_labels_attrs()
  49. def load_graphs(self, graphs, targets=None):
  50. self.__graphs = graphs
  51. self.__targets = targets
  52. self.set_labels_attrs()
  53. def load_predefined_dataset(self, ds_name):
  54. current_path = os.path.dirname(os.path.realpath(__file__)) + '/'
  55. if ds_name == 'Letter-high': # node non-symb
  56. ds_file = current_path + '../../datasets/Letter-high/Letter-high_A.txt'
  57. self.__graphs, self.__targets = loadDataset(ds_file)
  58. elif ds_name == 'Letter-med': # node non-symb
  59. ds_file = current_path + '../../datasets/Letter-high/Letter-med_A.txt'
  60. self.__graphs, self.__targets = loadDataset(ds_file)
  61. elif ds_name == 'Letter-low': # node non-symb
  62. ds_file = current_path + '../../datasets/Letter-high/Letter-low_A.txt'
  63. self.__graphs, self.__targets = loadDataset(ds_file)
  64. elif ds_name == 'Fingerprint':
  65. ds_file = current_path + '../../datasets/Fingerprint/Fingerprint_A.txt'
  66. self.__graphs, self.__targets = loadDataset(ds_file)
  67. elif ds_name == 'SYNTHETIC':
  68. pass
  69. elif ds_name == 'SYNTHETICnew':
  70. ds_file = current_path + '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt'
  71. self.__graphs, self.__targets = loadDataset(ds_file)
  72. elif ds_name == 'Synthie':
  73. pass
  74. elif ds_name == 'COIL-DEL':
  75. ds_file = current_path + '../../datasets/COIL-DEL/COIL-DEL_A.txt'
  76. self.__graphs, self.__targets = loadDataset(ds_file)
  77. elif ds_name == 'COIL-RAG':
  78. pass
  79. elif ds_name == 'COLORS-3':
  80. pass
  81. elif ds_name == 'FRANKENSTEIN':
  82. pass
  83. self.set_labels_attrs()
  84. def set_labels_attrs(self, node_labels=None, node_attrs=None, edge_labels=None, edge_attrs=None):
  85. # @todo: remove labels which have only one possible values.
  86. if node_labels is None:
  87. self.__node_labels = self.__graphs[0].graph['node_labels']
  88. # # graphs are considered node unlabeled if all nodes have the same label.
  89. # infos.update({'node_labeled': is_nl if node_label_num > 1 else False})
  90. if node_attrs is None:
  91. self.__node_attrs = self.__graphs[0].graph['node_attrs']
  92. # for G in Gn:
  93. # for n in G.nodes(data=True):
  94. # if 'attributes' in n[1]:
  95. # return len(n[1]['attributes'])
  96. # return 0
  97. if edge_labels is None:
  98. self.__edge_labels = self.__graphs[0].graph['edge_labels']
  99. # # graphs are considered edge unlabeled if all edges have the same label.
  100. # infos.update({'edge_labeled': is_el if edge_label_num > 1 else False})
  101. if edge_attrs is None:
  102. self.__edge_attrs = self.__graphs[0].graph['edge_attrs']
  103. # for G in Gn:
  104. # if nx.number_of_edges(G) > 0:
  105. # for e in G.edges(data=True):
  106. # if 'attributes' in e[2]:
  107. # return len(e[2]['attributes'])
  108. # return 0
  109. def get_dataset_infos(self, keys=None):
  110. """Computes and returns the structure and property information of the graph dataset.
  111. Parameters
  112. ----------
  113. keys : list
  114. List of strings which indicate which informations will be returned. The
  115. possible choices includes:
  116. 'substructures': sub-structures graphs contains, including 'linear', 'non
  117. linear' and 'cyclic'.
  118. 'node_label_dim': whether vertices have symbolic labels.
  119. 'edge_label_dim': whether egdes have symbolic labels.
  120. 'directed': whether graphs in dataset are directed.
  121. 'dataset_size': number of graphs in dataset.
  122. 'total_node_num': total number of vertices of all graphs in dataset.
  123. 'ave_node_num': average number of vertices of graphs in dataset.
  124. 'min_node_num': minimum number of vertices of graphs in dataset.
  125. 'max_node_num': maximum number of vertices of graphs in dataset.
  126. 'total_edge_num': total number of edges of all graphs in dataset.
  127. 'ave_edge_num': average number of edges of graphs in dataset.
  128. 'min_edge_num': minimum number of edges of graphs in dataset.
  129. 'max_edge_num': maximum number of edges of graphs in dataset.
  130. 'ave_node_degree': average vertex degree of graphs in dataset.
  131. 'min_node_degree': minimum vertex degree of graphs in dataset.
  132. 'max_node_degree': maximum vertex degree of graphs in dataset.
  133. 'ave_fill_factor': average fill factor (number_of_edges /
  134. (number_of_nodes ** 2)) of graphs in dataset.
  135. 'min_fill_factor': minimum fill factor of graphs in dataset.
  136. 'max_fill_factor': maximum fill factor of graphs in dataset.
  137. 'node_label_nums': list of numbers of symbolic vertex labels of graphs in dataset.
  138. 'edge_label_nums': list number of symbolic edge labels of graphs in dataset.
  139. 'node_attr_dim': number of dimensions of non-symbolic vertex labels.
  140. Extracted from the 'attributes' attribute of graph nodes.
  141. 'edge_attr_dim': number of dimensions of non-symbolic edge labels.
  142. Extracted from the 'attributes' attribute of graph edges.
  143. 'class_number': number of classes. Only available for classification problems.
  144. All informations above will be returned if `keys` is not given.
  145. Return
  146. ------
  147. dict
  148. Information of the graph dataset keyed by `keys`.
  149. """
  150. infos = {}
  151. if keys == None:
  152. keys = [
  153. 'substructures',
  154. 'node_label_dim',
  155. 'edge_label_dim',
  156. 'directed',
  157. 'dataset_size',
  158. 'total_node_num',
  159. 'ave_node_num',
  160. 'min_node_num',
  161. 'max_node_num',
  162. 'total_edge_num',
  163. 'ave_edge_num',
  164. 'min_edge_num',
  165. 'max_edge_num',
  166. 'ave_node_degree',
  167. 'min_node_degree',
  168. 'max_node_degree',
  169. 'ave_fill_factor',
  170. 'min_fill_factor',
  171. 'max_fill_factor',
  172. 'node_label_nums',
  173. 'edge_label_nums',
  174. 'node_attr_dim',
  175. 'edge_attr_dim',
  176. 'class_number',
  177. ]
  178. # dataset size
  179. if 'dataset_size' in keys:
  180. if self.__dataset_size is None:
  181. self.__dataset_size = self.__get_dataset_size()
  182. infos['dataset_size'] = self.__dataset_size
  183. # graph node number
  184. if any(i in keys for i in ['total_node_num', 'ave_node_num', 'min_node_num', 'max_node_num']):
  185. all_node_nums = self.__get_all_node_nums()
  186. if 'total_node_num' in keys:
  187. if self.__total_node_num is None:
  188. self.__total_node_num = self.__get_total_node_num(all_node_nums)
  189. infos['total_node_num'] = self.__total_node_num
  190. if 'ave_node_num' in keys:
  191. if self.__ave_node_num is None:
  192. self.__ave_node_num = self.__get_ave_node_num(all_node_nums)
  193. infos['ave_node_num'] = self.__ave_node_num
  194. if 'min_node_num' in keys:
  195. if self.__min_node_num is None:
  196. self.__min_node_num = self.__get_min_node_num(all_node_nums)
  197. infos['min_node_num'] = self.__min_node_num
  198. if 'max_node_num' in keys:
  199. if self.__max_node_num is None:
  200. self.__max_node_num = self.__get_max_node_num(all_node_nums)
  201. infos['max_node_num'] = self.__max_node_num
  202. # graph edge number
  203. if any(i in keys for i in ['total_edge_num', 'ave_edge_num', 'min_edge_num', 'max_edge_num']):
  204. all_edge_nums = self.__get_all_edge_nums()
  205. if 'total_edge_num' in keys:
  206. if self.__total_edge_num is None:
  207. self.__total_edge_num = self.__get_total_edge_num(all_edge_nums)
  208. infos['total_edge_num'] = self.__total_edge_num
  209. if 'ave_edge_num' in keys:
  210. if self.__ave_edge_num is None:
  211. self.__ave_edge_num = self.__get_ave_edge_num(all_edge_nums)
  212. infos['ave_edge_num'] = self.__ave_edge_num
  213. if 'max_edge_num' in keys:
  214. if self.__max_edge_num is None:
  215. self.__max_edge_num = self.__get_max_edge_num(all_edge_nums)
  216. infos['max_edge_num'] = self.__max_edge_num
  217. if 'min_edge_num' in keys:
  218. if self.__min_edge_num is None:
  219. self.__min_edge_num = self.__get_min_edge_num(all_edge_nums)
  220. infos['min_edge_num'] = self.__min_edge_num
  221. # label number
  222. if 'node_label_dim' in keys:
  223. if self.__node_label_dim is None:
  224. self.__node_label_dim = self.__get_node_label_dim()
  225. infos['node_label_dim'] = self.__node_label_dim
  226. if 'node_label_nums' in keys:
  227. if self.__node_label_nums is None:
  228. self.__node_label_nums = {}
  229. for node_label in self.__node_labels:
  230. self.__node_label_nums[node_label] = self.get_node_label_num(node_label)
  231. infos['node_label_nums'] = self.__node_label_nums
  232. if 'edge_label_dim' in keys:
  233. if self.__edge_label_dim is None:
  234. self.__edge_label_dim = self.__get_edge_label_dim()
  235. infos['edge_label_dim'] = self.__edge_label_dim
  236. if 'edge_label_nums' in keys:
  237. if self.__edge_label_nums is None:
  238. self.__edge_label_nums = {}
  239. for edge_label in self.__edge_labels:
  240. self.__edge_label_nums[edge_label] = self.get_edge_label_num(edge_label)
  241. infos['edge_label_nums'] = self.__edge_label_nums
  242. if 'directed' in keys or 'substructures' in keys:
  243. if self.__directed is None:
  244. self.__directed = self.__is_directed()
  245. infos['directed'] = self.__directed
  246. # node degree
  247. if any(i in keys for i in ['ave_node_degree', 'max_node_degree', 'min_node_degree']):
  248. all_node_degrees = self.__get_all_node_degrees()
  249. if 'ave_node_degree' in keys:
  250. if self.__ave_node_degree is None:
  251. self.__ave_node_degree = self.__get_ave_node_degree(all_node_degrees)
  252. infos['ave_node_degree'] = self.__ave_node_degree
  253. if 'max_node_degree' in keys:
  254. if self.__max_node_degree is None:
  255. self.__max_node_degree = self.__get_max_node_degree(all_node_degrees)
  256. infos['max_node_degree'] = self.__max_node_degree
  257. if 'min_node_degree' in keys:
  258. if self.__min_node_degree is None:
  259. self.__min_node_degree = self.__get_min_node_degree(all_node_degrees)
  260. infos['min_node_degree'] = self.__min_node_degree
  261. # fill factor
  262. if any(i in keys for i in ['ave_fill_factor', 'max_fill_factor', 'min_fill_factor']):
  263. all_fill_factors = self.__get_all_fill_factors()
  264. if 'ave_fill_factor' in keys:
  265. if self.__ave_fill_factor is None:
  266. self.__ave_fill_factor = self.__get_ave_fill_factor(all_fill_factors)
  267. infos['ave_fill_factor'] = self.__ave_fill_factor
  268. if 'max_fill_factor' in keys:
  269. if self.__max_fill_factor is None:
  270. self.__max_fill_factor = self.__get_max_fill_factor(all_fill_factors)
  271. infos['max_fill_factor'] = self.__max_fill_factor
  272. if 'min_fill_factor' in keys:
  273. if self.__min_fill_factor is None:
  274. self.__min_fill_factor = self.__get_min_fill_factor(all_fill_factors)
  275. infos['min_fill_factor'] = self.__min_fill_factor
  276. if 'substructures' in keys:
  277. if self.__substructures is None:
  278. self.__substructures = self.__get_substructures()
  279. infos['substructures'] = self.__substructures
  280. if 'class_number' in keys:
  281. if self.__class_number is None:
  282. self.__class_number = self.__get_class_number()
  283. infos['class_number'] = self.__class_number
  284. if 'node_attr_dim' in keys:
  285. if self.__node_attr_dim is None:
  286. self.__node_attr_dim = self.__get_node_attr_dim()
  287. infos['node_attr_dim'] = self.__node_attr_dim
  288. if 'edge_attr_dim' in keys:
  289. if self.__edge_attr_dim is None:
  290. self.__edge_attr_dim = self.__get_edge_attr_dim()
  291. infos['edge_attr_dim'] = self.__edge_attr_dim
  292. return infos
  293. def print_graph_infos(self, infos):
  294. from collections import OrderedDict
  295. keys = list(infos.keys())
  296. print(OrderedDict(sorted(infos.items(), key=lambda i: keys.index(i[0]))))
  297. def cut_graphs(self, range_):
  298. self.__graphs = [self.__graphs[i] for i in range_]
  299. self.set_labels_attrs()
  300. def __get_dataset_size(self):
  301. return len(self.__graphs)
  302. def __get_all_node_nums(self):
  303. return [nx.number_of_nodes(G) for G in self.__graphs]
  304. def __get_total_node_nums(self, all_node_nums):
  305. return np.sum(all_node_nums)
  306. def __get_ave_node_num(self, all_node_nums):
  307. return np.mean(all_node_nums)
  308. def __get_min_node_num(self, all_node_nums):
  309. return np.amin(all_node_nums)
  310. def __get_max_node_num(self, all_node_nums):
  311. return np.amax(all_node_nums)
  312. def __get_all_edge_nums(self):
  313. return [nx.number_of_edges(G) for G in self.__graphs]
  314. def __get_total_edge_nums(self, all_edge_nums):
  315. return np.sum(all_edge_nums)
  316. def __get_ave_edge_num(self, all_edge_nums):
  317. return np.mean(all_edge_nums)
  318. def __get_min_edge_num(self, all_edge_nums):
  319. return np.amin(all_edge_nums)
  320. def __get_max_edge_num(self, all_edge_nums):
  321. return np.amax(all_edge_nums)
  322. def __get_node_label_dim(self):
  323. return len(self.__node_labels)
  324. def __get_node_label_num(self, node_label):
  325. nl = set()
  326. for G in self.__graphs:
  327. nl = nl | set(nx.get_node_attributes(G, node_label).values())
  328. return len(nl)
  329. def __get_edge_label_dim(self):
  330. return len(self.__edge_labels)
  331. def __get_edge_label_num(self, edge_label):
  332. el = set()
  333. for G in self.__graphs:
  334. el = el | set(nx.get_edge_attributes(G, edge_label).values())
  335. return len(el)
  336. def __is_directed(self):
  337. return nx.is_directed(self.__graphs[0])
  338. def __get_all_node_degrees(self):
  339. return [np.mean(list(dict(G.degree()).values())) for G in self.__graphs]
  340. def __get_ave_node_degree(self, all_node_degrees):
  341. return np.mean(all_node_degrees)
  342. def __get_max_node_degree(self, all_node_degrees):
  343. return np.amax(all_node_degrees)
  344. def __get_min_node_degree(self, all_node_degrees):
  345. return np.amin(all_node_degrees)
  346. def __get_all_fill_factors(self):
  347. """
  348. Get fill factor, the number of non-zero entries in the adjacency matrix.
  349. Returns
  350. -------
  351. list[float]
  352. List of fill factors for all graphs.
  353. """
  354. return [nx.number_of_edges(G) / (nx.number_of_nodes(G) ** 2) for G in self.__graphs]
  355. def __get_ave_fill_factor(self, all_fill_factors):
  356. return np.mean(all_fill_factors)
  357. def __get_max_fill_factor(self, all_fill_factors):
  358. return np.amax(all_fill_factors)
  359. def __get_min_fill_factor(self, all_fill_factors):
  360. return np.amin(all_fill_factors)
  361. def __get_substructures(self):
  362. subs = set()
  363. for G in self.__graphs:
  364. degrees = list(dict(G.degree()).values())
  365. if any(i == 2 for i in degrees):
  366. subs.add('linear')
  367. if np.amax(degrees) >= 3:
  368. subs.add('non linear')
  369. if 'linear' in subs and 'non linear' in subs:
  370. break
  371. if self.__directed:
  372. for G in self.__graphs:
  373. if len(list(nx.find_cycle(G))) > 0:
  374. subs.add('cyclic')
  375. break
  376. # else:
  377. # # @todo: this method does not work for big graph with large amount of edges like D&D, try a better way.
  378. # upper = np.amin([nx.number_of_edges(G) for G in Gn]) * 2 + 10
  379. # for G in Gn:
  380. # if (nx.number_of_edges(G) < upper):
  381. # cyc = list(nx.simple_cycles(G.to_directed()))
  382. # if any(len(i) > 2 for i in cyc):
  383. # subs.add('cyclic')
  384. # break
  385. # if 'cyclic' not in subs:
  386. # for G in Gn:
  387. # cyc = list(nx.simple_cycles(G.to_directed()))
  388. # if any(len(i) > 2 for i in cyc):
  389. # subs.add('cyclic')
  390. # break
  391. return subs
  392. def __get_class_num(self):
  393. return len(set(self.__targets))
  394. def __get_node_attr_dim(self):
  395. return len(self.__node_attrs)
  396. def __get_edge_attr_dim(self):
  397. return len(self.__edge_attrs)
  398. @property
  399. def graphs(self):
  400. return self.__graphs
  401. @property
  402. def targets(self):
  403. return self.__targets
  404. @property
  405. def node_labels(self):
  406. return self.__node_labels
  407. @property
  408. def edge_labels(self):
  409. return self.__edge_labels
  410. @property
  411. def node_attrs(self):
  412. return self.__node_attrs
  413. @property
  414. def edge_attrs(self):
  415. return self.__edge_attrs
  416. def split_dataset_by_target(dataset):
  417. from gklearn.preimage.utils import get_same_item_indices
  418. graphs = dataset.graphs
  419. targets = dataset.targets
  420. datasets = []
  421. idx_targets = get_same_item_indices(targets)
  422. for key, val in idx_targets.items():
  423. sub_graphs = [graphs[i] for i in val]
  424. sub_dataset = Dataset()
  425. sub_dataset.load_graphs(sub_graphs, [key] * len(val))
  426. datasets.append(sub_dataset)
  427. return datasets

A Python package for graph kernels, graph edit distances and graph pre-image problem.