You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

graphfiles.py 26 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762
  1. """ Utilities function to manage graph files
  2. """
  3. from os.path import dirname, splitext
  4. def loadCT(filename):
  5. """load data from a Chemical Table (.ct) file.
  6. Notes
  7. ------
  8. a typical example of data in .ct is like this:
  9. 3 2 <- number of nodes and edges
  10. 0.0000 0.0000 0.0000 C <- each line describes a node (x,y,z + label)
  11. 0.0000 0.0000 0.0000 C
  12. 0.0000 0.0000 0.0000 O
  13. 1 3 1 1 <- each line describes an edge : to, from, bond type, bond stereo
  14. 2 3 1 1
  15. Check `CTFile Formats file <https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&ved=2ahUKEwivhaSdjsTlAhVhx4UKHczHA8gQFjAJegQIARAC&url=https%3A%2F%2Fwww.daylight.com%2Fmeetings%2Fmug05%2FKappler%2Fctfile.pdf&usg=AOvVaw1cDNrrmMClkFPqodlF2inS>`__
  16. for detailed format discription.
  17. """
  18. import networkx as nx
  19. from os.path import basename
  20. g = nx.Graph()
  21. with open(filename) as f:
  22. content = f.read().splitlines()
  23. g = nx.Graph(
  24. name = str(content[0]),
  25. filename = basename(filename)) # set name of the graph
  26. tmp = content[1].split(" ")
  27. if tmp[0] == '':
  28. nb_nodes = int(tmp[1]) # number of the nodes
  29. nb_edges = int(tmp[2]) # number of the edges
  30. else:
  31. nb_nodes = int(tmp[0])
  32. nb_edges = int(tmp[1])
  33. # patch for compatibility : label will be removed later
  34. for i in range(0, nb_nodes):
  35. tmp = content[i + 2].split(" ")
  36. tmp = [x for x in tmp if x != '']
  37. g.add_node(i, atom=tmp[3].strip(),
  38. label=[item.strip() for item in tmp[3:]],
  39. attributes=[item.strip() for item in tmp[0:3]])
  40. for i in range(0, nb_edges):
  41. tmp = content[i + g.number_of_nodes() + 2].split(" ")
  42. tmp = [x for x in tmp if x != '']
  43. g.add_edge(int(tmp[0]) - 1, int(tmp[1]) - 1,
  44. bond_type=tmp[2].strip(),
  45. label=[item.strip() for item in tmp[2:]])
  46. return g
  47. def loadGXL(filename):
  48. from os.path import basename
  49. import networkx as nx
  50. import xml.etree.ElementTree as ET
  51. tree = ET.parse(filename)
  52. root = tree.getroot()
  53. index = 0
  54. g = nx.Graph(filename=basename(filename), name=root[0].attrib['id'])
  55. dic = {} # used to retrieve incident nodes of edges
  56. for node in root.iter('node'):
  57. dic[node.attrib['id']] = index
  58. labels = {}
  59. for attr in node.iter('attr'):
  60. labels[attr.attrib['name']] = attr[0].text
  61. if 'chem' in labels:
  62. labels['label'] = labels['chem']
  63. labels['atom'] = labels['chem']
  64. g.add_node(index, **labels)
  65. index += 1
  66. for edge in root.iter('edge'):
  67. labels = {}
  68. for attr in edge.iter('attr'):
  69. labels[attr.attrib['name']] = attr[0].text
  70. if 'valence' in labels:
  71. labels['label'] = labels['valence']
  72. labels['bond_type'] = labels['valence']
  73. g.add_edge(dic[edge.attrib['from']], dic[edge.attrib['to']], **labels)
  74. return g
  75. def saveGXL(graph, filename, method='default', node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]):
  76. if method == 'default':
  77. gxl_file = open(filename, 'w')
  78. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  79. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  80. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  81. if 'name' in graph.graph:
  82. name = str(graph.graph['name'])
  83. else:
  84. name = 'dummy'
  85. gxl_file.write("<graph id=\"" + name + "\" edgeids=\"false\" edgemode=\"undirected\">\n")
  86. for v, attrs in graph.nodes(data=True):
  87. gxl_file.write("<node id=\"_" + str(v) + "\">")
  88. for l_name in node_labels:
  89. gxl_file.write("<attr name=\"" + l_name + "\"><int>" +
  90. str(attrs[l_name]) + "</int></attr>")
  91. for a_name in node_attrs:
  92. gxl_file.write("<attr name=\"" + a_name + "\"><float>" +
  93. str(attrs[a_name]) + "</float></attr>")
  94. gxl_file.write("</node>\n")
  95. for v1, v2, attrs in graph.edges(data=True):
  96. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">")
  97. for l_name in edge_labels:
  98. gxl_file.write("<attr name=\"" + l_name + "\"><int>" +
  99. str(attrs[l_name]) + "</int></attr>")
  100. for a_name in edge_attrs:
  101. gxl_file.write("<attr name=\"" + a_name + "\"><float>" +
  102. str(attrs[a_name]) + "</float></attr>")
  103. gxl_file.write("</edge>\n")
  104. gxl_file.write("</graph>\n")
  105. gxl_file.write("</gxl>")
  106. gxl_file.close()
  107. elif method == 'benoit':
  108. import xml.etree.ElementTree as ET
  109. root_node = ET.Element('gxl')
  110. attr = dict()
  111. attr['id'] = str(graph.graph['name'])
  112. attr['edgeids'] = 'true'
  113. attr['edgemode'] = 'undirected'
  114. graph_node = ET.SubElement(root_node, 'graph', attrib=attr)
  115. for v in graph:
  116. current_node = ET.SubElement(graph_node, 'node', attrib={'id': str(v)})
  117. for attr in graph.nodes[v].keys():
  118. cur_attr = ET.SubElement(
  119. current_node, 'attr', attrib={'name': attr})
  120. cur_value = ET.SubElement(cur_attr,
  121. graph.nodes[v][attr].__class__.__name__)
  122. cur_value.text = graph.nodes[v][attr]
  123. for v1 in graph:
  124. for v2 in graph[v1]:
  125. if (v1 < v2): # Non oriented graphs
  126. cur_edge = ET.SubElement(
  127. graph_node,
  128. 'edge',
  129. attrib={
  130. 'from': str(v1),
  131. 'to': str(v2)
  132. })
  133. for attr in graph[v1][v2].keys():
  134. cur_attr = ET.SubElement(
  135. cur_edge, 'attr', attrib={'name': attr})
  136. cur_value = ET.SubElement(
  137. cur_attr, graph[v1][v2][attr].__class__.__name__)
  138. cur_value.text = str(graph[v1][v2][attr])
  139. tree = ET.ElementTree(root_node)
  140. tree.write(filename)
  141. elif method == 'gedlib':
  142. # reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22
  143. # pass
  144. gxl_file = open(filename, 'w')
  145. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  146. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  147. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  148. gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"true\" edgemode=\"undirected\">\n")
  149. for v, attrs in graph.nodes(data=True):
  150. gxl_file.write("<node id=\"_" + str(v) + "\">")
  151. gxl_file.write("<attr name=\"" + "chem" + "\"><int>" + str(attrs['chem']) + "</int></attr>")
  152. gxl_file.write("</node>\n")
  153. for v1, v2, attrs in graph.edges(data=True):
  154. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">")
  155. gxl_file.write("<attr name=\"valence\"><int>" + str(attrs['valence']) + "</int></attr>")
  156. # gxl_file.write("<attr name=\"valence\"><int>" + "1" + "</int></attr>")
  157. gxl_file.write("</edge>\n")
  158. gxl_file.write("</graph>\n")
  159. gxl_file.write("</gxl>")
  160. gxl_file.close()
  161. elif method == 'gedlib-letter':
  162. # reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22
  163. # and https://github.com/dbblumenthal/gedlib/blob/master/data/datasets/Letter/HIGH/AP1_0000.gxl
  164. gxl_file = open(filename, 'w')
  165. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  166. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  167. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  168. gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"false\" edgemode=\"undirected\">\n")
  169. for v, attrs in graph.nodes(data=True):
  170. gxl_file.write("<node id=\"_" + str(v) + "\">")
  171. gxl_file.write("<attr name=\"x\"><float>" + str(attrs['attributes'][0]) + "</float></attr>")
  172. gxl_file.write("<attr name=\"y\"><float>" + str(attrs['attributes'][1]) + "</float></attr>")
  173. gxl_file.write("</node>\n")
  174. for v1, v2, attrs in graph.edges(data=True):
  175. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\"/>\n")
  176. gxl_file.write("</graph>\n")
  177. gxl_file.write("</gxl>")
  178. gxl_file.close()
  179. def loadSDF(filename):
  180. """load data from structured data file (.sdf file).
  181. Notes
  182. ------
  183. A SDF file contains a group of molecules, represented in the similar way as in MOL format.
  184. Check `here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__ for detailed structure.
  185. """
  186. import networkx as nx
  187. from os.path import basename
  188. from tqdm import tqdm
  189. import sys
  190. data = []
  191. with open(filename) as f:
  192. content = f.read().splitlines()
  193. index = 0
  194. pbar = tqdm(total=len(content) + 1, desc='load SDF', file=sys.stdout)
  195. while index < len(content):
  196. index_old = index
  197. g = nx.Graph(name=content[index].strip()) # set name of the graph
  198. tmp = content[index + 3]
  199. nb_nodes = int(tmp[:3]) # number of the nodes
  200. nb_edges = int(tmp[3:6]) # number of the edges
  201. for i in range(0, nb_nodes):
  202. tmp = content[i + index + 4]
  203. g.add_node(i, atom=tmp[31:34].strip())
  204. for i in range(0, nb_edges):
  205. tmp = content[i + index + g.number_of_nodes() + 4]
  206. tmp = [tmp[i:i + 3] for i in range(0, len(tmp), 3)]
  207. g.add_edge(
  208. int(tmp[0]) - 1, int(tmp[1]) - 1, bond_type=tmp[2].strip())
  209. data.append(g)
  210. index += 4 + g.number_of_nodes() + g.number_of_edges()
  211. while content[index].strip() != '$$$$': # seperator
  212. index += 1
  213. index += 1
  214. pbar.update(index - index_old)
  215. pbar.update(1)
  216. pbar.close()
  217. return data
  218. def loadMAT(filename, extra_params):
  219. """Load graph data from a MATLAB (up to version 7.1) .mat file.
  220. Notes
  221. ------
  222. A MAT file contains a struct array containing graphs, and a column vector lx containing a class label for each graph.
  223. Check README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__ for detailed structure.
  224. """
  225. from scipy.io import loadmat
  226. import numpy as np
  227. import networkx as nx
  228. data = []
  229. content = loadmat(filename)
  230. order = extra_params['am_sp_al_nl_el']
  231. # print(content)
  232. # print('----')
  233. for key, value in content.items():
  234. if key[0] == 'l': # class label
  235. y = np.transpose(value)[0].tolist()
  236. # print(y)
  237. elif key[0] != '_':
  238. # print(value[0][0][0])
  239. # print()
  240. # print(value[0][0][1])
  241. # print()
  242. # print(value[0][0][2])
  243. # print()
  244. # if len(value[0][0]) > 3:
  245. # print(value[0][0][3])
  246. # print('----')
  247. # if adjacency matrix is not compressed / edge label exists
  248. if order[1] == 0:
  249. for i, item in enumerate(value[0]):
  250. # print(item)
  251. # print('------')
  252. g = nx.Graph(name=i) # set name of the graph
  253. nl = np.transpose(item[order[3]][0][0][0]) # node label
  254. # print(item[order[3]])
  255. # print()
  256. for index, label in enumerate(nl[0]):
  257. g.add_node(index, atom=str(label))
  258. el = item[order[4]][0][0][0] # edge label
  259. for edge in el:
  260. g.add_edge(
  261. edge[0] - 1, edge[1] - 1, bond_type=str(edge[2]))
  262. data.append(g)
  263. else:
  264. from scipy.sparse import csc_matrix
  265. for i, item in enumerate(value[0]):
  266. # print(item)
  267. # print('------')
  268. g = nx.Graph(name=i) # set name of the graph
  269. nl = np.transpose(item[order[3]][0][0][0]) # node label
  270. # print(nl)
  271. # print()
  272. for index, label in enumerate(nl[0]):
  273. g.add_node(index, atom=str(label))
  274. sam = item[order[0]] # sparse adjacency matrix
  275. index_no0 = sam.nonzero()
  276. for col, row in zip(index_no0[0], index_no0[1]):
  277. # print(col)
  278. # print(row)
  279. g.add_edge(col, row)
  280. data.append(g)
  281. # print(g.edges(data=True))
  282. return data, y
  283. def loadTXT(filename):
  284. """Load graph data from a .txt file.
  285. Notes
  286. ------
  287. The graph data is loaded from separate files.
  288. Check README in `downloadable file <http://tiny.cc/PK_MLJ_data>`__, 2018 for detailed structure.
  289. """
  290. # import numpy as np
  291. import networkx as nx
  292. from os import listdir
  293. from os.path import dirname, basename
  294. def get_label_names(frm):
  295. """Get label names from DS_label_readme.txt file.
  296. """
  297. def get_names_from_line(line):
  298. """Get names of labels/attributes from a line.
  299. """
  300. str_names = line.split('[')[1].split(']')[0]
  301. names = str_names.split(',')
  302. names = [attr.strip() for attr in names]
  303. return names
  304. label_names = {'node_labels': [], 'node_attrs': [],
  305. 'edge_labels': [], 'edge_attrs': []}
  306. content_rm = open(frm).read().splitlines()
  307. for line in content_rm:
  308. line = line.strip()
  309. if line.startswith('Node labels:'):
  310. label_names['node_labels'] = get_names_from_line(line)
  311. elif line.startswith('Node attributes:'):
  312. label_names['node_attrs'] = get_names_from_line(line)
  313. elif line.startswith('Edge labels:'):
  314. label_names['edge_labels'] = get_names_from_line(line)
  315. elif line.startswith('Edge attributes:'):
  316. label_names['edge_attrs'] = get_names_from_line(line)
  317. return label_names
  318. # get dataset name.
  319. dirname_dataset = dirname(filename)
  320. filename = basename(filename)
  321. fn_split = filename.split('_A')
  322. ds_name = fn_split[0].strip()
  323. # load data file names
  324. for name in listdir(dirname_dataset):
  325. if ds_name + '_A' in name:
  326. fam = dirname_dataset + '/' + name
  327. elif ds_name + '_graph_indicator' in name:
  328. fgi = dirname_dataset + '/' + name
  329. elif ds_name + '_graph_labels' in name:
  330. fgl = dirname_dataset + '/' + name
  331. elif ds_name + '_node_labels' in name:
  332. fnl = dirname_dataset + '/' + name
  333. elif ds_name + '_edge_labels' in name:
  334. fel = dirname_dataset + '/' + name
  335. elif ds_name + '_edge_attributes' in name:
  336. fea = dirname_dataset + '/' + name
  337. elif ds_name + '_node_attributes' in name:
  338. fna = dirname_dataset + '/' + name
  339. elif ds_name + '_graph_attributes' in name:
  340. fga = dirname_dataset + '/' + name
  341. elif ds_name + '_label_readme' in name:
  342. frm = dirname_dataset + '/' + name
  343. # this is supposed to be the node attrs, make sure to put this as the last 'elif'
  344. elif ds_name + '_attributes' in name:
  345. fna = dirname_dataset + '/' + name
  346. # get labels and attributes names.
  347. if 'frm' in locals():
  348. label_names = get_label_names(frm)
  349. else:
  350. label_names = {'node_labels': [], 'node_attrs': [],
  351. 'edge_labels': [], 'edge_attrs': []}
  352. content_gi = open(fgi).read().splitlines() # graph indicator
  353. content_am = open(fam).read().splitlines() # adjacency matrix
  354. content_gl = open(fgl).read().splitlines() # graph labels
  355. # create graphs and add nodes
  356. data = [nx.Graph(name=str(i),
  357. node_labels=label_names['node_labels'],
  358. node_attrs=label_names['node_attrs'],
  359. edge_labels=label_names['edge_labels'],
  360. edge_attrs=label_names['edge_attrs']) for i in range(0, len(content_gl))]
  361. if 'fnl' in locals():
  362. content_nl = open(fnl).read().splitlines() # node labels
  363. for idx, line in enumerate(content_gi):
  364. # transfer to int first in case of unexpected blanks
  365. data[int(line) - 1].add_node(idx)
  366. labels = [l.strip() for l in content_nl[idx].split(',')]
  367. data[int(line) - 1].nodes[idx]['atom'] = str(int(labels[0])) # @todo: this should be removed after.
  368. if data[int(line) - 1].graph['node_labels'] == []:
  369. for i, label in enumerate(labels):
  370. l_name = 'label_' + str(i)
  371. data[int(line) - 1].nodes[idx][l_name] = label
  372. data[int(line) - 1].graph['node_labels'].append(l_name)
  373. else:
  374. for i, l_name in enumerate(data[int(line) - 1].graph['node_labels']):
  375. data[int(line) - 1].nodes[idx][l_name] = labels[i]
  376. else:
  377. for i, line in enumerate(content_gi):
  378. data[int(line) - 1].add_node(i)
  379. # add edges
  380. for line in content_am:
  381. tmp = line.split(',')
  382. n1 = int(tmp[0]) - 1
  383. n2 = int(tmp[1]) - 1
  384. # ignore edge weight here.
  385. g = int(content_gi[n1]) - 1
  386. data[g].add_edge(n1, n2)
  387. # add edge labels
  388. if 'fel' in locals():
  389. content_el = open(fel).read().splitlines()
  390. for idx, line in enumerate(content_el):
  391. labels = [l.strip() for l in line.split(',')]
  392. n = [int(i) - 1 for i in content_am[idx].split(',')]
  393. g = int(content_gi[n[0]]) - 1
  394. data[g].edges[n[0], n[1]]['bond_type'] = labels[0] # @todo: this should be removed after.
  395. if data[g].graph['edge_labels'] == []:
  396. for i, label in enumerate(labels):
  397. l_name = 'label_' + str(i)
  398. data[g].edges[n[0], n[1]][l_name] = label
  399. data[g].graph['edge_labels'].append(l_name)
  400. else:
  401. for i, l_name in enumerate(data[g].graph['edge_labels']):
  402. data[g].edges[n[0], n[1]][l_name] = labels[i]
  403. # add node attributes
  404. if 'fna' in locals():
  405. content_na = open(fna).read().splitlines()
  406. for idx, line in enumerate(content_na):
  407. attrs = [a.strip() for a in line.split(',')]
  408. g = int(content_gi[idx]) - 1
  409. data[g].nodes[idx]['attributes'] = attrs # @todo: this should be removed after.
  410. if data[g].graph['node_attrs'] == []:
  411. for i, attr in enumerate(attrs):
  412. a_name = 'attr_' + str(i)
  413. data[g].nodes[idx][a_name] = attr
  414. data[g].graph['node_attrs'].append(a_name)
  415. else:
  416. for i, a_name in enumerate(data[g].graph['node_attrs']):
  417. data[g].nodes[idx][a_name] = attrs[i]
  418. # add edge attributes
  419. if 'fea' in locals():
  420. content_ea = open(fea).read().splitlines()
  421. for idx, line in enumerate(content_ea):
  422. attrs = [a.strip() for a in line.split(',')]
  423. n = [int(i) - 1 for i in content_am[idx].split(',')]
  424. g = int(content_gi[n[0]]) - 1
  425. data[g].edges[n[0], n[1]]['attributes'] = attrs # @todo: this should be removed after.
  426. if data[g].graph['edge_attrs'] == []:
  427. for i, attr in enumerate(attrs):
  428. a_name = 'attr_' + str(i)
  429. data[g].edges[n[0], n[1]][a_name] = attr
  430. data[g].graph['edge_attrs'].append(a_name)
  431. else:
  432. for i, a_name in enumerate(data[g].graph['edge_attrs']):
  433. data[g].edges[n[0], n[1]][a_name] = attrs[i]
  434. # load y
  435. y = [int(i) for i in content_gl]
  436. return data, y
  437. def loadDataset(filename, filename_y=None, extra_params=None):
  438. """Read graph data from filename and load them as NetworkX graphs.
  439. Parameters
  440. ----------
  441. filename : string
  442. The name of the file from where the dataset is read.
  443. filename_y : string
  444. The name of file of the targets corresponding to graphs.
  445. extra_params : dict
  446. Extra parameters only designated to '.mat' format.
  447. Return
  448. ------
  449. data : List of NetworkX graph.
  450. y : List
  451. Targets corresponding to graphs.
  452. Notes
  453. -----
  454. This function supports following graph dataset formats:
  455. 'ds': load data from .ds file. See comments of function loadFromDS for a example.
  456. 'cxl': load data from Graph eXchange Language file (.cxl file). See
  457. `here <http://www.gupro.de/GXL/Introduction/background.html>`__ for detail.
  458. 'sdf': load data from structured data file (.sdf file). See
  459. `here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__
  460. for details.
  461. 'mat': Load graph data from a MATLAB (up to version 7.1) .mat file. See
  462. README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__
  463. for details.
  464. 'txt': Load graph data from a special .txt file. See
  465. `here <https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets>`__
  466. for details. Note here filename is the name of either .txt file in
  467. the dataset directory.
  468. """
  469. extension = splitext(filename)[1][1:]
  470. if extension == "ds":
  471. data, y = loadFromDS(filename, filename_y)
  472. elif extension == "cxl":
  473. import xml.etree.ElementTree as ET
  474. dirname_dataset = dirname(filename)
  475. tree = ET.parse(filename)
  476. root = tree.getroot()
  477. data = []
  478. y = []
  479. for graph in root.iter('graph'):
  480. mol_filename = graph.attrib['file']
  481. mol_class = graph.attrib['class']
  482. data.append(loadGXL(dirname_dataset + '/' + mol_filename))
  483. y.append(mol_class)
  484. elif extension == 'xml':
  485. data, y = loadFromXML(filename, extra_params)
  486. elif extension == "sdf":
  487. # import numpy as np
  488. from tqdm import tqdm
  489. import sys
  490. data = loadSDF(filename)
  491. y_raw = open(filename_y).read().splitlines()
  492. y_raw.pop(0)
  493. tmp0 = []
  494. tmp1 = []
  495. for i in range(0, len(y_raw)):
  496. tmp = y_raw[i].split(',')
  497. tmp0.append(tmp[0])
  498. tmp1.append(tmp[1].strip())
  499. y = []
  500. for i in tqdm(range(0, len(data)), desc='ajust data', file=sys.stdout):
  501. try:
  502. y.append(tmp1[tmp0.index(data[i].name)].strip())
  503. except ValueError: # if data[i].name not in tmp0
  504. data[i] = []
  505. data = list(filter(lambda a: a != [], data))
  506. elif extension == "mat":
  507. data, y = loadMAT(filename, extra_params)
  508. elif extension == 'txt':
  509. data, y = loadTXT(filename)
  510. # print(len(y))
  511. # print(y)
  512. # print(data[0].nodes(data=True))
  513. # print('----')
  514. # print(data[0].edges(data=True))
  515. # for g in data:
  516. # print(g.nodes(data=True))
  517. # print('----')
  518. # print(g.edges(data=True))
  519. return data, y
  520. def loadFromXML(filename, extra_params):
  521. import xml.etree.ElementTree as ET
  522. if extra_params:
  523. dirname_dataset = extra_params
  524. else:
  525. dirname_dataset = dirname(filename)
  526. tree = ET.parse(filename)
  527. root = tree.getroot()
  528. data = []
  529. y = []
  530. for graph in root.iter('graph'):
  531. mol_filename = graph.attrib['file']
  532. mol_class = graph.attrib['class']
  533. data.append(loadGXL(dirname_dataset + '/' + mol_filename))
  534. y.append(mol_class)
  535. return data, y
  536. def loadFromDS(filename, filename_y):
  537. """Load data from .ds file.
  538. Possible graph formats include:
  539. '.ct': see function loadCT for detail.
  540. '.gxl': see dunction loadGXL for detail.
  541. Note these graph formats are checked automatically by the extensions of
  542. graph files.
  543. """
  544. dirname_dataset = dirname(filename)
  545. data = []
  546. y = []
  547. content = open(filename).read().splitlines()
  548. extension = splitext(content[0].split(' ')[0])[1][1:]
  549. if filename_y is None or filename_y == '':
  550. if extension == 'ct':
  551. for i in range(0, len(content)):
  552. tmp = content[i].split(' ')
  553. # remove the '#'s in file names
  554. data.append(
  555. loadCT(dirname_dataset + '/' + tmp[0].replace('#', '', 1)))
  556. y.append(float(tmp[1]))
  557. elif extension == 'gxl':
  558. for i in range(0, len(content)):
  559. tmp = content[i].split(' ')
  560. # remove the '#'s in file names
  561. data.append(
  562. loadGXL(dirname_dataset + '/' + tmp[0].replace('#', '', 1)))
  563. y.append(float(tmp[1]))
  564. else: # y in a seperate file
  565. if extension == 'ct':
  566. for i in range(0, len(content)):
  567. tmp = content[i]
  568. # remove the '#'s in file names
  569. data.append(
  570. loadCT(dirname_dataset + '/' + tmp.replace('#', '', 1)))
  571. elif extension == 'gxl':
  572. for i in range(0, len(content)):
  573. tmp = content[i]
  574. # remove the '#'s in file names
  575. data.append(
  576. loadGXL(dirname_dataset + '/' + tmp.replace('#', '', 1)))
  577. content_y = open(filename_y).read().splitlines()
  578. # assume entries in filename and filename_y have the same order.
  579. for item in content_y:
  580. tmp = item.split(' ')
  581. # assume the 3rd entry in a line is y (for Alkane dataset)
  582. y.append(float(tmp[2]))
  583. return data, y
  584. def saveDataset(Gn, y, gformat='gxl', group=None, filename='gfile', xparams=None):
  585. """Save list of graphs.
  586. """
  587. import os
  588. dirname_ds = os.path.dirname(filename)
  589. if dirname_ds != '':
  590. dirname_ds += '/'
  591. if not os.path.exists(dirname_ds) :
  592. os.makedirs(dirname_ds)
  593. if xparams is not None and 'graph_dir' in xparams:
  594. graph_dir = xparams['graph_dir'] + '/'
  595. if not os.path.exists(graph_dir):
  596. os.makedirs(graph_dir)
  597. else:
  598. graph_dir = dirname_ds
  599. if group == 'xml' and gformat == 'gxl':
  600. kwargs = {'method': xparams['method']} if xparams is not None else {}
  601. with open(filename + '.xml', 'w') as fgroup:
  602. fgroup.write("<?xml version=\"1.0\"?>")
  603. fgroup.write("\n<!DOCTYPE GraphCollection SYSTEM \"http://www.inf.unibz.it/~blumenthal/dtd/GraphCollection.dtd\">")
  604. fgroup.write("\n<GraphCollection>")
  605. for idx, g in enumerate(Gn):
  606. fname_tmp = "graph" + str(idx) + ".gxl"
  607. saveGXL(g, graph_dir + fname_tmp, **kwargs)
  608. fgroup.write("\n\t<graph file=\"" + fname_tmp + "\" class=\"" + str(y[idx]) + "\"/>")
  609. fgroup.write("\n</GraphCollection>")
  610. fgroup.close()
  611. if __name__ == '__main__':
  612. # ### Load dataset from .ds file.
  613. # # .ct files.
  614. # ds = {'name': 'Alkane', 'dataset': '../../datasets/Alkane/dataset.ds',
  615. # 'dataset_y': '../../datasets/Alkane/dataset_boiling_point_names.txt'}
  616. # Gn, y = loadDataset(ds['dataset'], filename_y=ds['dataset_y'])
  617. ## ds = {'name': 'Acyclic', 'dataset': '../../datasets/acyclic/dataset_bps.ds'} # node symb
  618. ## Gn, y = loadDataset(ds['dataset'])
  619. ## ds = {'name': 'MAO', 'dataset': '../../datasets/MAO/dataset.ds'} # node/edge symb
  620. ## Gn, y = loadDataset(ds['dataset'])
  621. ## ds = {'name': 'PAH', 'dataset': '../../datasets/PAH/dataset.ds'} # unlabeled
  622. ## Gn, y = loadDataset(ds['dataset'])
  623. # print(Gn[1].nodes(data=True))
  624. # print(Gn[1].edges(data=True))
  625. # print(y[1])
  626. # # .gxl file.
  627. # ds = {'name': 'monoterpenoides',
  628. # 'dataset': '../../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb
  629. # Gn, y = loadDataset(ds['dataset'])
  630. # print(Gn[1].nodes(data=True))
  631. # print(Gn[1].edges(data=True))
  632. # print(y[1])
  633. # ### Convert graph from one format to another.
  634. # # .gxl file.
  635. # import networkx as nx
  636. # ds = {'name': 'monoterpenoides',
  637. # 'dataset': '../../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb
  638. # Gn, y = loadDataset(ds['dataset'])
  639. # y = [int(i) for i in y]
  640. # print(Gn[1].nodes(data=True))
  641. # print(Gn[1].edges(data=True))
  642. # print(y[1])
  643. # # Convert a graph to the proper NetworkX format that can be recognized by library gedlib.
  644. # Gn_new = []
  645. # for G in Gn:
  646. # G_new = nx.Graph()
  647. # for nd, attrs in G.nodes(data=True):
  648. # G_new.add_node(str(nd), chem=attrs['atom'])
  649. # for nd1, nd2, attrs in G.edges(data=True):
  650. # G_new.add_edge(str(nd1), str(nd2), valence=attrs['bond_type'])
  651. ## G_new.add_edge(str(nd1), str(nd2))
  652. # Gn_new.append(G_new)
  653. # print(Gn_new[1].nodes(data=True))
  654. # print(Gn_new[1].edges(data=True))
  655. # print(Gn_new[1])
  656. # filename = '/media/ljia/DATA/research-repo/codes/others/gedlib/tests_linlin/generated_datsets/monoterpenoides/gxl/monoterpenoides'
  657. # xparams = {'method': 'gedlib'}
  658. # saveDataset(Gn, y, gformat='gxl', group='xml', filename=filename, xparams=xparams)
  659. # save dataset.
  660. # ds = {'name': 'MUTAG', 'dataset': '../../datasets/MUTAG/MUTAG.mat',
  661. # 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb
  662. # Gn, y = loadDataset(ds['dataset'], extra_params=ds['extra_params'])
  663. # saveDataset(Gn, y, group='xml', filename='temp/temp')
  664. # test - new way to add labels and attributes.
  665. # dataset = '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt'
  666. # dataset = '../../datasets/Fingerprint/Fingerprint_A.txt'
  667. # dataset = '../../datasets/Letter-med/Letter-med_A.txt'
  668. # dataset = '../../datasets/AIDS/AIDS_A.txt'
  669. # dataset = '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'
  670. # Gn, y_all = loadDataset(dataset)
  671. pass

A Python package for graph kernels, graph edit distances and graph pre-image problem.