You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

random_walk_meta.py 2.6 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Wed Aug 19 16:55:17 2020
  5. @author: ljia
  6. @references:
  7. [1] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010.
  8. """
  9. import networkx as nx
  10. from gklearn.utils import SpecialLabel
  11. from gklearn.kernels import GraphKernel
  12. class RandomWalkMeta(GraphKernel):
  13. def __init__(self, **kwargs):
  14. GraphKernel.__init__(self)
  15. self._weight = kwargs.get('weight', 1)
  16. self._p = kwargs.get('p', None)
  17. self._q = kwargs.get('q', None)
  18. self._edge_weight = kwargs.get('edge_weight', None)
  19. self._ds_infos = kwargs.get('ds_infos', {})
  20. def _compute_gm_series(self):
  21. pass
  22. def _compute_gm_imap_unordered(self):
  23. pass
  24. def _compute_kernel_list_series(self, g1, g_list):
  25. pass
  26. def _compute_kernel_list_imap_unordered(self, g1, g_list):
  27. pass
  28. def _compute_single_kernel_series(self, g1, g2):
  29. pass
  30. def _check_graphs(self, Gn):
  31. # remove graphs with no edges, as no walk can be found in their structures,
  32. # so the weight matrix between such a graph and itself might be zero.
  33. for g in Gn:
  34. if nx.number_of_edges(g) == 0:
  35. raise Exception('Graphs must contain edges to construct weight matrices.')
  36. def _check_edge_weight(self, G0, verbose):
  37. eweight = None
  38. if self._edge_weight is None:
  39. if verbose >= 2:
  40. print('\n None edge weight is specified. Set all weight to 1.\n')
  41. else:
  42. try:
  43. some_weight = list(nx.get_edge_attributes(G0, self._edge_weight).values())[0]
  44. if isinstance(some_weight, float) or isinstance(some_weight, int):
  45. eweight = self._edge_weight
  46. else:
  47. if verbose >= 2:
  48. print('\n Edge weight with name %s is not float or integer. Set all weight to 1.\n' % self._edge_weight)
  49. except:
  50. if verbose >= 2:
  51. print('\n Edge weight with name "%s" is not found in the edge attributes. Set all weight to 1.\n' % self._edge_weight)
  52. self._edge_weight = eweight
  53. def _add_dummy_labels(self, Gn):
  54. if len(self._node_labels) == 0 or (len(self._node_labels) == 1 and self._node_labels[0] == SpecialLabel.DUMMY):
  55. for i in range(len(Gn)):
  56. nx.set_node_attributes(Gn[i], '0', SpecialLabel.DUMMY)
  57. self._node_labels = [SpecialLabel.DUMMY]
  58. if len(self._edge_labels) == 0 or (len(self._edge_labels) == 1 and self._edge_labels[0] == SpecialLabel.DUMMY):
  59. for i in range(len(Gn)):
  60. nx.set_edge_attributes(Gn[i], '0', SpecialLabel.DUMMY)
  61. self._edge_labels = [SpecialLabel.DUMMY]

A Python package for graph kernels, graph edit distances and graph pre-image problem.