You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

shortest_path.py 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Tue Apr 7 15:24:58 2020
  5. @author: ljia
  6. @references:
  7. [1] Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData
  8. Mining, Fifth IEEE International Conference on 2005 Nov 27 (pp. 8-pp). IEEE.
  9. """
  10. import sys
  11. from itertools import product
  12. # from functools import partial
  13. from multiprocessing import Pool
  14. from gklearn.utils import get_iters
  15. import numpy as np
  16. import networkx as nx
  17. from gklearn.utils.parallel import parallel_gm, parallel_me
  18. from gklearn.utils.utils import getSPGraph
  19. from gklearn.kernels import GraphKernel
  20. class ShortestPath(GraphKernel):
  21. def __init__(self, **kwargs):
  22. GraphKernel.__init__(self)
  23. self._node_labels = kwargs.get('node_labels', [])
  24. self._node_attrs = kwargs.get('node_attrs', [])
  25. self._edge_weight = kwargs.get('edge_weight', None)
  26. self._node_kernels = kwargs.get('node_kernels', None)
  27. self._fcsp = kwargs.get('fcsp', True)
  28. self._ds_infos = kwargs.get('ds_infos', {})
  29. def _compute_gm_series(self):
  30. self._all_graphs_have_edges(self._graphs)
  31. # get shortest path graph of each graph.
  32. iterator = get_iters(self._graphs, desc='getting sp graphs', file=sys.stdout, verbose=(self.verbose >= 2))
  33. self._graphs = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator]
  34. # compute Gram matrix.
  35. gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
  36. from itertools import combinations_with_replacement
  37. itr = combinations_with_replacement(range(0, len(self._graphs)), 2)
  38. len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2)
  39. iterator = get_iters(itr, desc='Computing kernels',
  40. length=len_itr, file=sys.stdout,verbose=(self.verbose >= 2))
  41. for i, j in iterator:
  42. kernel = self._sp_do(self._graphs[i], self._graphs[j])
  43. gram_matrix[i][j] = kernel
  44. gram_matrix[j][i] = kernel
  45. return gram_matrix
  46. def _compute_gm_imap_unordered(self):
  47. self._all_graphs_have_edges(self._graphs)
  48. # get shortest path graph of each graph.
  49. pool = Pool(self.n_jobs)
  50. get_sp_graphs_fun = self._wrapper_get_sp_graphs
  51. itr = zip(self._graphs, range(0, len(self._graphs)))
  52. if len(self._graphs) < 100 * self.n_jobs:
  53. chunksize = int(len(self._graphs) / self.n_jobs) + 1
  54. else:
  55. chunksize = 100
  56. iterator = get_iters(pool.imap_unordered(get_sp_graphs_fun, itr, chunksize),
  57. desc='getting sp graphs', file=sys.stdout,
  58. length=len(self._graphs), verbose=(self.verbose >= 2))
  59. for i, g in iterator:
  60. self._graphs[i] = g
  61. pool.close()
  62. pool.join()
  63. # compute Gram matrix.
  64. gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
  65. def init_worker(gs_toshare):
  66. global G_gs
  67. G_gs = gs_toshare
  68. do_fun = self._wrapper_sp_do
  69. parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker,
  70. glbv=(self._graphs,), n_jobs=self.n_jobs, verbose=self.verbose)
  71. return gram_matrix
  72. def _compute_kernel_list_series(self, g1, g_list):
  73. self._all_graphs_have_edges([g1] + g_list)
  74. # get shortest path graphs of g1 and each graph in g_list.
  75. g1 = getSPGraph(g1, edge_weight=self._edge_weight)
  76. iterator = get_iters(g_list, desc='getting sp graphs', file=sys.stdout, verbose=(self.verbose >= 2))
  77. g_list = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator]
  78. # compute kernel list.
  79. kernel_list = [None] * len(g_list)
  80. iterator = get_iters(range(len(g_list)), desc='Computing kernels', file=sys.stdout, length=len(g_list), verbose=(self.verbose >= 2))
  81. for i in iterator:
  82. kernel = self._sp_do(g1, g_list[i])
  83. kernel_list[i] = kernel
  84. return kernel_list
  85. def _compute_kernel_list_imap_unordered(self, g1, g_list):
  86. self._all_graphs_have_edges([g1] + g_list)
  87. # get shortest path graphs of g1 and each graph in g_list.
  88. g1 = getSPGraph(g1, edge_weight=self._edge_weight)
  89. pool = Pool(self.n_jobs)
  90. get_sp_graphs_fun = self._wrapper_get_sp_graphs
  91. itr = zip(g_list, range(0, len(g_list)))
  92. if len(g_list) < 100 * self.n_jobs:
  93. chunksize = int(len(g_list) / self.n_jobs) + 1
  94. else:
  95. chunksize = 100
  96. iterator = get_iters(pool.imap_unordered(get_sp_graphs_fun, itr, chunksize),
  97. desc='getting sp graphs', file=sys.stdout,
  98. length=len(g_list), verbose=(self.verbose >= 2))
  99. for i, g in iterator:
  100. g_list[i] = g
  101. pool.close()
  102. pool.join()
  103. # compute Gram matrix.
  104. kernel_list = [None] * len(g_list)
  105. def init_worker(g1_toshare, gl_toshare):
  106. global G_g1, G_gl
  107. G_g1 = g1_toshare
  108. G_gl = gl_toshare
  109. do_fun = self._wrapper_kernel_list_do
  110. def func_assign(result, var_to_assign):
  111. var_to_assign[result[0]] = result[1]
  112. itr = range(len(g_list))
  113. len_itr = len(g_list)
  114. parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr,
  115. init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', n_jobs=self.n_jobs, itr_desc='Computing kernels', verbose=self.verbose)
  116. return kernel_list
  117. def _wrapper_kernel_list_do(self, itr):
  118. return itr, self._sp_do(G_g1, G_gl[itr])
  119. def _compute_single_kernel_series(self, g1, g2):
  120. self._all_graphs_have_edges([g1] + [g2])
  121. g1 = getSPGraph(g1, edge_weight=self._edge_weight)
  122. g2 = getSPGraph(g2, edge_weight=self._edge_weight)
  123. kernel = self._sp_do(g1, g2)
  124. return kernel
  125. def _wrapper_get_sp_graphs(self, itr_item):
  126. g = itr_item[0]
  127. i = itr_item[1]
  128. return i, getSPGraph(g, edge_weight=self._edge_weight)
  129. def _sp_do(self, g1, g2):
  130. if self._fcsp: # @todo: it may be put outside the _sp_do().
  131. return self._sp_do_fcsp(g1, g2)
  132. else:
  133. return self._sp_do_naive(g1, g2)
  134. def _sp_do_fcsp(self, g1, g2):
  135. kernel = 0
  136. # compute shortest path matrices first, method borrowed from FCSP.
  137. vk_dict = {} # shortest path matrices dict
  138. if len(self._node_labels) > 0: # @todo: it may be put outside the _sp_do().
  139. # node symb and non-synb labeled
  140. if len(self._node_attrs) > 0:
  141. kn = self._node_kernels['mix']
  142. for n1, n2 in product(
  143. g1.nodes(data=True), g2.nodes(data=True)):
  144. n1_labels = [n1[1][nl] for nl in self._node_labels]
  145. n2_labels = [n2[1][nl] for nl in self._node_labels]
  146. n1_attrs = [n1[1][na] for na in self._node_attrs]
  147. n2_attrs = [n2[1][na] for na in self._node_attrs]
  148. vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels, n1_attrs, n2_attrs)
  149. # node symb labeled
  150. else:
  151. kn = self._node_kernels['symb']
  152. for n1 in g1.nodes(data=True):
  153. for n2 in g2.nodes(data=True):
  154. n1_labels = [n1[1][nl] for nl in self._node_labels]
  155. n2_labels = [n2[1][nl] for nl in self._node_labels]
  156. vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels)
  157. else:
  158. # node non-synb labeled
  159. if len(self._node_attrs) > 0:
  160. kn = self._node_kernels['nsymb']
  161. for n1 in g1.nodes(data=True):
  162. for n2 in g2.nodes(data=True):
  163. n1_attrs = [n1[1][na] for na in self._node_attrs]
  164. n2_attrs = [n2[1][na] for na in self._node_attrs]
  165. vk_dict[(n1[0], n2[0])] = kn(n1_attrs, n2_attrs)
  166. # node unlabeled
  167. else:
  168. for e1, e2 in product(
  169. g1.edges(data=True), g2.edges(data=True)):
  170. if e1[2]['cost'] == e2[2]['cost']:
  171. kernel += 1
  172. return kernel
  173. # compute graph kernels
  174. if self._ds_infos['directed']:
  175. for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
  176. if e1[2]['cost'] == e2[2]['cost']:
  177. nk11, nk22 = vk_dict[(e1[0], e2[0])], vk_dict[(e1[1], e2[1])]
  178. kn1 = nk11 * nk22
  179. kernel += kn1
  180. else:
  181. for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
  182. if e1[2]['cost'] == e2[2]['cost']:
  183. # each edge walk is counted twice, starting from both its extreme nodes.
  184. nk11, nk12, nk21, nk22 = vk_dict[(e1[0], e2[0])], vk_dict[(
  185. e1[0], e2[1])], vk_dict[(e1[1], e2[0])], vk_dict[(e1[1], e2[1])]
  186. kn1 = nk11 * nk22
  187. kn2 = nk12 * nk21
  188. kernel += kn1 + kn2
  189. # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation
  190. # # compute vertex kernels
  191. # try:
  192. # vk_mat = np.zeros((nx.number_of_nodes(g1),
  193. # nx.number_of_nodes(g2)))
  194. # g1nl = enumerate(g1.nodes(data=True))
  195. # g2nl = enumerate(g2.nodes(data=True))
  196. # for i1, n1 in g1nl:
  197. # for i2, n2 in g2nl:
  198. # vk_mat[i1][i2] = kn(
  199. # n1[1][node_label], n2[1][node_label],
  200. # [n1[1]['attributes']], [n2[1]['attributes']])
  201. # range1 = range(0, len(edge_w_g[i]))
  202. # range2 = range(0, len(edge_w_g[j]))
  203. # for i1 in range1:
  204. # x1 = edge_x_g[i][i1]
  205. # y1 = edge_y_g[i][i1]
  206. # w1 = edge_w_g[i][i1]
  207. # for i2 in range2:
  208. # x2 = edge_x_g[j][i2]
  209. # y2 = edge_y_g[j][i2]
  210. # w2 = edge_w_g[j][i2]
  211. # ke = (w1 == w2)
  212. # if ke > 0:
  213. # kn1 = vk_mat[x1][x2] * vk_mat[y1][y2]
  214. # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2]
  215. # kernel += kn1 + kn2
  216. return kernel
  217. def _sp_do_naive(self, g1, g2):
  218. kernel = 0
  219. # Define the function to compute kernels between vertices in each condition.
  220. if len(self._node_labels) > 0:
  221. # node symb and non-synb labeled
  222. if len(self._node_attrs) > 0:
  223. def compute_vk(n1, n2):
  224. kn = self._node_kernels['mix']
  225. n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels]
  226. n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels]
  227. n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs]
  228. n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs]
  229. return kn(n1_labels, n2_labels, n1_attrs, n2_attrs)
  230. # node symb labeled
  231. else:
  232. def compute_vk(n1, n2):
  233. kn = self._node_kernels['symb']
  234. n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels]
  235. n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels]
  236. return kn(n1_labels, n2_labels)
  237. else:
  238. # node non-synb labeled
  239. if len(self._node_attrs) > 0:
  240. def compute_vk(n1, n2):
  241. kn = self._node_kernels['nsymb']
  242. n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs]
  243. n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs]
  244. return kn(n1_attrs, n2_attrs)
  245. # node unlabeled
  246. else:
  247. for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
  248. if e1[2]['cost'] == e2[2]['cost']:
  249. kernel += 1
  250. return kernel
  251. # compute graph kernels
  252. if self._ds_infos['directed']:
  253. for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
  254. if e1[2]['cost'] == e2[2]['cost']:
  255. nk11, nk22 = compute_vk(e1[0], e2[0]), compute_vk(e1[1], e2[1])
  256. kn1 = nk11 * nk22
  257. kernel += kn1
  258. else:
  259. for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
  260. if e1[2]['cost'] == e2[2]['cost']:
  261. # each edge walk is counted twice, starting from both its extreme nodes.
  262. nk11, nk12, nk21, nk22 = compute_vk(e1[0], e2[0]), compute_vk(
  263. e1[0], e2[1]), compute_vk(e1[1], e2[0]), compute_vk(e1[1], e2[1])
  264. kn1 = nk11 * nk22
  265. kn2 = nk12 * nk21
  266. kernel += kn1 + kn2
  267. return kernel
  268. def _wrapper_sp_do(self, itr):
  269. i = itr[0]
  270. j = itr[1]
  271. return i, j, self._sp_do(G_gs[i], G_gs[j])
  272. def _all_graphs_have_edges(self, graphs):
  273. for G in graphs:
  274. if nx.number_of_edges(G) == 0:
  275. raise ValueError('Not all graphs have edges!!!')

A Python package for graph kernels, graph edit distances and graph pre-image problem.