|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Fri Sep 28 16:37:29 2018
-
- @author: ljia
- """
-
- import functools
- from libs import *
- import multiprocessing
-
- from gklearn.kernels.structuralspKernel import structuralspkernel
- from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
-
- dslist = [
- # {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression',
- # 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'},
- # # contains single node graph, node symb
- # {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds',
- # 'task': 'regression'}, # node symb
- # {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb
- # {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled
- # {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb
- # {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},
- # # node nsymb
- # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb
- # {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb
- # {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb
- # {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},
- # # node symb/nsymb
- {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb
- # {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt'},
- # # node nsymb symb
- #
- # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'},
- # # node/edge symb
- # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb
- # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb
- # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb
- # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'},
- #
- # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb
- # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb
- # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb
- # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb
- # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb
-
- # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb
- # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb
- # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',
- # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb
-
- # # not working below
- # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},
- # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},
- # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},
- # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},
- ]
- estimator = structuralspkernel
-
- ## for non-symbolic labels.
- #gkernels = [functools.partial(gaussiankernel, gamma=1 / ga)
- # for ga in np.logspace(0, 10, num=11, base=10)]
- #mixkernels = [functools.partial(kernelproduct, deltakernel, gk) for gk in gkernels]
- #sub_kernels = [{'symb': deltakernel, 'nsymb': gkernels[i], 'mix': mixkernels[i]}
- # for i in range(len(gkernels))]
-
- # for symbolic labels only.
- #gaussiankernel = functools.partial(gaussiankernel, gamma=0.5)
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}]
-
- param_grid_precomputed = {'node_kernels': sub_kernels, 'edge_kernels': sub_kernels,
- 'compute_method': ['naive']}
- param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)},
- {'alpha': np.logspace(-10, 10, num=41, base=10)}]
-
- for ds in dslist:
- print()
- print(ds['name'])
- model_selection_for_precomputed_kernel(
- ds['dataset'],
- estimator,
- param_grid_precomputed,
- (param_grid[1] if ('task' in ds and ds['task']
- == 'regression') else param_grid[0]),
- (ds['task'] if 'task' in ds else 'classification'),
- NUM_TRIALS=30,
- datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
- extra_params=(ds['extra_params'] if 'extra_params' in ds else None),
- ds_name=ds['name'],
- n_jobs=multiprocessing.cpu_count(),
- read_gm_from_file=False,
- verbose=True)
- print()
|