You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_structuralspkernel.py 4.9 kB

5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Fri Sep 28 16:37:29 2018
  5. @author: ljia
  6. """
  7. import functools
  8. from libs import *
  9. import multiprocessing
  10. from gklearn.kernels.structuralspKernel import structuralspkernel
  11. from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
  12. dslist = [
  13. # {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression',
  14. # 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'},
  15. # # contains single node graph, node symb
  16. # {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds',
  17. # 'task': 'regression'}, # node symb
  18. # {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb
  19. # {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled
  20. # {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb
  21. # {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},
  22. # # node nsymb
  23. # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb
  24. # {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb
  25. # {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb
  26. # {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},
  27. # # node symb/nsymb
  28. {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb
  29. # {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt'},
  30. # # node nsymb symb
  31. #
  32. # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'},
  33. # # node/edge symb
  34. # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb
  35. # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb
  36. # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb
  37. # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'},
  38. #
  39. # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb
  40. # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb
  41. # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb
  42. # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb
  43. # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb
  44. # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb
  45. # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb
  46. # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',
  47. # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb
  48. # # not working below
  49. # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},
  50. # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},
  51. # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},
  52. # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},
  53. ]
  54. estimator = structuralspkernel
  55. ## for non-symbolic labels.
  56. #gkernels = [functools.partial(gaussiankernel, gamma=1 / ga)
  57. # for ga in np.logspace(0, 10, num=11, base=10)]
  58. #mixkernels = [functools.partial(kernelproduct, deltakernel, gk) for gk in gkernels]
  59. #sub_kernels = [{'symb': deltakernel, 'nsymb': gkernels[i], 'mix': mixkernels[i]}
  60. # for i in range(len(gkernels))]
  61. # for symbolic labels only.
  62. #gaussiankernel = functools.partial(gaussiankernel, gamma=0.5)
  63. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  64. sub_kernels = [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}]
  65. param_grid_precomputed = {'node_kernels': sub_kernels, 'edge_kernels': sub_kernels,
  66. 'compute_method': ['naive']}
  67. param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)},
  68. {'alpha': np.logspace(-10, 10, num=41, base=10)}]
  69. for ds in dslist:
  70. print()
  71. print(ds['name'])
  72. model_selection_for_precomputed_kernel(
  73. ds['dataset'],
  74. estimator,
  75. param_grid_precomputed,
  76. (param_grid[1] if ('task' in ds and ds['task']
  77. == 'regression') else param_grid[0]),
  78. (ds['task'] if 'task' in ds else 'classification'),
  79. NUM_TRIALS=30,
  80. datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
  81. extra_params=(ds['extra_params'] if 'extra_params' in ds else None),
  82. ds_name=ds['name'],
  83. n_jobs=multiprocessing.cpu_count(),
  84. read_gm_from_file=False,
  85. verbose=True)
  86. print()

A Python package for graph kernels, graph edit distances and graph pre-image problem.