|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Tue Jan 14 15:39:29 2020
-
- @author: ljia
- """
- import multiprocessing
- import functools
- from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
- from gklearn.preimage.utils import generate_median_preimages_by_class
- from gklearn.utils import compute_gram_matrices_by_class
-
-
- def xp_median_preimage_9_1():
- """xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
- """
- # set parameters.
- ds_name = 'MAO' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_9_2():
- """xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
- """
- # set parameters.
- ds_name = 'MAO' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- kernel_options = {'name': 'PathUpToH',
- 'depth': 9, #
- 'k_func': 'MinMax', #
- 'compute_method': 'trie',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_9_3():
- """xp 9_3: MAO, Treelet, using CONSTANT.
- """
- from gklearn.utils.kernels import polynomialkernel
- # set parameters.
- ds_name = 'MAO' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- pkernel = functools.partial(polynomialkernel, d=4, c=1e+7)
- kernel_options = {'name': 'Treelet', #
- 'sub_kernel': pkernel,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_8_1():
- """xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
- """
- # set parameters.
- ds_name = 'Monoterpenoides' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_8_2():
- """xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
- """
- # set parameters.
- ds_name = 'Monoterpenoides' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- kernel_options = {'name': 'PathUpToH',
- 'depth': 7, #
- 'k_func': 'MinMax', #
- 'compute_method': 'trie',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_8_3():
- """xp 8_3: Monoterpenoides, Treelet, using CONSTANT.
- """
- from gklearn.utils.kernels import polynomialkernel
- # set parameters.
- ds_name = 'Monoterpenoides' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- pkernel = functools.partial(polynomialkernel, d=2, c=1e+5)
- kernel_options = {'name': 'Treelet',
- 'sub_kernel': pkernel,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_7_1():
- """xp 7_1: MUTAG, StructuralSP, using CONSTANT.
- """
- # set parameters.
- ds_name = 'MUTAG' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_7_2():
- """xp 7_2: MUTAG, PathUpToH, using CONSTANT.
- """
- # set parameters.
- ds_name = 'MUTAG' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- kernel_options = {'name': 'PathUpToH',
- 'depth': 2, #
- 'k_func': 'MinMax', #
- 'compute_method': 'trie',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_7_3():
- """xp 7_3: MUTAG, Treelet, using CONSTANT.
- """
- from gklearn.utils.kernels import polynomialkernel
- # set parameters.
- ds_name = 'MUTAG' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- pkernel = functools.partial(polynomialkernel, d=3, c=1e+8)
- kernel_options = {'name': 'Treelet',
- 'sub_kernel': pkernel,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_6_1():
- """xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
- """
- # set parameters.
- ds_name = 'COIL-RAG' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'NON_SYMBOLIC', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_6_2():
- """xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
- """
- # set parameters.
- ds_name = 'COIL-RAG' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'NON_SYMBOLIC', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = True #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_5_1():
- """xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
- """
- # set parameters.
- ds_name = 'FRANKENSTEIN' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 0], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'NON_SYMBOLIC',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_4_1():
- """xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
- """
- # set parameters.
- ds_name = 'COLORS-3' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 0], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'NON_SYMBOLIC',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_3_2():
- """xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
- """
- # set parameters.
- ds_name = 'Fingerprint' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.525, 0.525, 0.001, 0.125, 0.125], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = {'edge_attrs': ['orient', 'angle']} #
- edge_required = True #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_3_1():
- """xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
- """
- # set parameters.
- ds_name = 'Fingerprint' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.525, 0.525, 0.001, 0.125, 0.125], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = {'edge_attrs': ['orient', 'angle']} #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_2_1():
- """xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
- """
- # set parameters.
- ds_name = 'COIL-DEL' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = {'edge_labels': ['valence']}
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # # compute gram matrices for each class a priori.
- # print('Compute gram matrices for each class a priori.')
- # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels)
-
-
- def xp_median_preimage_1_1():
- """xp 1_1: Letter-high, StructuralSP.
- """
- # set parameters.
- ds_name = 'Letter-high'
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
-
-
- def xp_median_preimage_1_2():
- """xp 1_2: Letter-high, ShortestPath.
- """
- # set parameters.
- ds_name = 'Letter-high'
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = True #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_10_1():
- """xp 10_1: Letter-med, StructuralSP.
- """
- # set parameters.
- ds_name = 'Letter-med'
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
-
-
- def xp_median_preimage_10_2():
- """xp 10_2: Letter-med, ShortestPath.
- """
- # set parameters.
- ds_name = 'Letter-med'
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = True #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_11_1():
- """xp 11_1: Letter-low, StructuralSP.
- """
- # set parameters.
- ds_name = 'Letter-low'
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
-
-
- def xp_median_preimage_11_2():
- """xp 11_2: Letter-low, ShortestPath.
- """
- # set parameters.
- ds_name = 'Letter-low'
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = True #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- if __name__ == "__main__":
-
- #### xp 1_1: Letter-high, StructuralSP.
- # xp_median_preimage_1_1()
-
- #### xp 1_2: Letter-high, ShortestPath.
- # xp_median_preimage_1_2()
-
- #### xp 10_1: Letter-med, StructuralSP.
- # xp_median_preimage_10_1()
-
- #### xp 10_2: Letter-med, ShortestPath.
- # xp_median_preimage_10_2()
-
- #### xp 11_1: Letter-low, StructuralSP.
- # xp_median_preimage_11_1()
-
- #### xp 11_2: Letter-low, ShortestPath.
- # xp_median_preimage_11_2()
-
- #### xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
- # xp_median_preimage_2_1()
-
- #### xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
- # xp_median_preimage_3_1()
-
- #### xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
- # xp_median_preimage_3_2()
-
- #### xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
- # xp_median_preimage_4_1()
-
- #### xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
- # xp_median_preimage_5_1()
-
- #### xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
- # xp_median_preimage_6_1()
-
- #### xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
- # xp_median_preimage_6_2()
-
- #### xp 7_1: MUTAG, StructuralSP, using CONSTANT.
- # xp_median_preimage_7_1()
-
- #### xp 7_2: MUTAG, PathUpToH, using CONSTANT.
- # xp_median_preimage_7_2()
-
- #### xp 7_3: MUTAG, Treelet, using CONSTANT.
- # xp_median_preimage_7_3()
-
- #### xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
- # xp_median_preimage_8_1()
-
- #### xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
- # xp_median_preimage_8_2()
-
- #### xp 8_3: Monoterpenoides, Treelet, using CONSTANT.
- # xp_median_preimage_8_3()
-
- #### xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
- # xp_median_preimage_9_1()
-
- #### xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
- # xp_median_preimage_9_2()
-
- #### xp 9_3: MAO, Treelet, using CONSTANT.
- xp_median_preimage_9_3()
|