You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

xp_median_preimage.py 54 kB

5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Tue Jan 14 15:39:29 2020
  5. @author: ljia
  6. """
  7. import multiprocessing
  8. import functools
  9. from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
  10. from gklearn.preimage.utils import generate_median_preimages_by_class
  11. from gklearn.utils import compute_gram_matrices_by_class
  12. def xp_median_preimage_9_1():
  13. """xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
  14. """
  15. # set parameters.
  16. ds_name = 'MAO' #
  17. mpg_options = {'fit_method': 'k-graphs',
  18. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  19. 'ds_name': ds_name,
  20. 'parallel': True, # False
  21. 'time_limit_in_sec': 0,
  22. 'max_itrs': 100, #
  23. 'max_itrs_without_update': 3,
  24. 'epsilon_residual': 0.01,
  25. 'epsilon_ec': 0.1,
  26. 'verbose': 2}
  27. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  28. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  29. kernel_options = {'name': 'StructuralSP',
  30. 'edge_weight': None,
  31. 'node_kernels': sub_kernels,
  32. 'edge_kernels': sub_kernels,
  33. 'compute_method': 'naive',
  34. 'parallel': 'imap_unordered',
  35. # 'parallel': None,
  36. 'n_jobs': multiprocessing.cpu_count(),
  37. 'normalize': True,
  38. 'verbose': 2}
  39. ged_options = {'method': 'IPFP',
  40. 'initialization_method': 'RANDOM', # 'NODE'
  41. 'initial_solutions': 10, # 1
  42. 'edit_cost': 'CONSTANT', #
  43. 'attr_distance': 'euclidean',
  44. 'ratio_runs_from_initial_solutions': 1,
  45. 'threads': multiprocessing.cpu_count(),
  46. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  47. mge_options = {'init_type': 'MEDOID',
  48. 'random_inits': 10,
  49. 'time_limit': 600,
  50. 'verbose': 2,
  51. 'refine': False}
  52. save_results = True
  53. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  54. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  55. edge_required = False #
  56. # print settings.
  57. print('parameters:')
  58. print('dataset name:', ds_name)
  59. print('mpg_options:', mpg_options)
  60. print('kernel_options:', kernel_options)
  61. print('ged_options:', ged_options)
  62. print('mge_options:', mge_options)
  63. print('save_results:', save_results)
  64. print('irrelevant_labels:', irrelevant_labels)
  65. print()
  66. # generate preimages.
  67. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  68. print('\n-------------------------------------')
  69. print('fit method:', fit_method, '\n')
  70. mpg_options['fit_method'] = fit_method
  71. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  72. def xp_median_preimage_9_2():
  73. """xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
  74. """
  75. # set parameters.
  76. ds_name = 'MAO' #
  77. mpg_options = {'fit_method': 'k-graphs',
  78. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  79. 'ds_name': ds_name,
  80. 'parallel': True, # False
  81. 'time_limit_in_sec': 0,
  82. 'max_itrs': 100, #
  83. 'max_itrs_without_update': 3,
  84. 'epsilon_residual': 0.01,
  85. 'epsilon_ec': 0.1,
  86. 'verbose': 2}
  87. kernel_options = {'name': 'PathUpToH',
  88. 'depth': 9, #
  89. 'k_func': 'MinMax', #
  90. 'compute_method': 'trie',
  91. 'parallel': 'imap_unordered',
  92. # 'parallel': None,
  93. 'n_jobs': multiprocessing.cpu_count(),
  94. 'normalize': True,
  95. 'verbose': 2}
  96. ged_options = {'method': 'IPFP',
  97. 'initialization_method': 'RANDOM', # 'NODE'
  98. 'initial_solutions': 10, # 1
  99. 'edit_cost': 'CONSTANT', #
  100. 'attr_distance': 'euclidean',
  101. 'ratio_runs_from_initial_solutions': 1,
  102. 'threads': multiprocessing.cpu_count(),
  103. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  104. mge_options = {'init_type': 'MEDOID',
  105. 'random_inits': 10,
  106. 'time_limit': 600,
  107. 'verbose': 2,
  108. 'refine': False}
  109. save_results = True
  110. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  111. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  112. edge_required = False #
  113. # print settings.
  114. print('parameters:')
  115. print('dataset name:', ds_name)
  116. print('mpg_options:', mpg_options)
  117. print('kernel_options:', kernel_options)
  118. print('ged_options:', ged_options)
  119. print('mge_options:', mge_options)
  120. print('save_results:', save_results)
  121. print('irrelevant_labels:', irrelevant_labels)
  122. print()
  123. # generate preimages.
  124. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  125. print('\n-------------------------------------')
  126. print('fit method:', fit_method, '\n')
  127. mpg_options['fit_method'] = fit_method
  128. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  129. def xp_median_preimage_9_3():
  130. """xp 9_3: MAO, Treelet, using CONSTANT.
  131. """
  132. from gklearn.utils.kernels import polynomialkernel
  133. # set parameters.
  134. ds_name = 'MAO' #
  135. mpg_options = {'fit_method': 'k-graphs',
  136. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  137. 'ds_name': ds_name,
  138. 'parallel': True, # False
  139. 'time_limit_in_sec': 0,
  140. 'max_itrs': 100, #
  141. 'max_itrs_without_update': 3,
  142. 'epsilon_residual': 0.01,
  143. 'epsilon_ec': 0.1,
  144. 'verbose': 2}
  145. pkernel = functools.partial(polynomialkernel, d=4, c=1e+7)
  146. kernel_options = {'name': 'Treelet', #
  147. 'sub_kernel': pkernel,
  148. 'parallel': 'imap_unordered',
  149. # 'parallel': None,
  150. 'n_jobs': multiprocessing.cpu_count(),
  151. 'normalize': True,
  152. 'verbose': 2}
  153. ged_options = {'method': 'IPFP',
  154. 'initialization_method': 'RANDOM', # 'NODE'
  155. 'initial_solutions': 10, # 1
  156. 'edit_cost': 'CONSTANT', #
  157. 'attr_distance': 'euclidean',
  158. 'ratio_runs_from_initial_solutions': 1,
  159. 'threads': multiprocessing.cpu_count(),
  160. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  161. mge_options = {'init_type': 'MEDOID',
  162. 'random_inits': 10,
  163. 'time_limit': 600,
  164. 'verbose': 2,
  165. 'refine': False}
  166. save_results = True
  167. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  168. irrelevant_labels = None #
  169. edge_required = False #
  170. # print settings.
  171. print('parameters:')
  172. print('dataset name:', ds_name)
  173. print('mpg_options:', mpg_options)
  174. print('kernel_options:', kernel_options)
  175. print('ged_options:', ged_options)
  176. print('mge_options:', mge_options)
  177. print('save_results:', save_results)
  178. print('irrelevant_labels:', irrelevant_labels)
  179. print()
  180. # generate preimages.
  181. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  182. print('\n-------------------------------------')
  183. print('fit method:', fit_method, '\n')
  184. mpg_options['fit_method'] = fit_method
  185. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  186. def xp_median_preimage_8_1():
  187. """xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
  188. """
  189. # set parameters.
  190. ds_name = 'Monoterpenoides' #
  191. mpg_options = {'fit_method': 'k-graphs',
  192. 'init_ecc': [3, 3, 1, 3, 3, 1], #
  193. 'ds_name': ds_name,
  194. 'parallel': True, # False
  195. 'time_limit_in_sec': 0,
  196. 'max_itrs': 100, #
  197. 'max_itrs_without_update': 3,
  198. 'epsilon_residual': 0.01,
  199. 'epsilon_ec': 0.1,
  200. 'verbose': 2}
  201. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  202. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  203. kernel_options = {'name': 'StructuralSP',
  204. 'edge_weight': None,
  205. 'node_kernels': sub_kernels,
  206. 'edge_kernels': sub_kernels,
  207. 'compute_method': 'naive',
  208. 'parallel': 'imap_unordered',
  209. # 'parallel': None,
  210. 'n_jobs': multiprocessing.cpu_count(),
  211. 'normalize': True,
  212. 'verbose': 2}
  213. ged_options = {'method': 'IPFP',
  214. 'initialization_method': 'RANDOM', # 'NODE'
  215. 'initial_solutions': 10, # 1
  216. 'edit_cost': 'CONSTANT', #
  217. 'attr_distance': 'euclidean',
  218. 'ratio_runs_from_initial_solutions': 1,
  219. 'threads': multiprocessing.cpu_count(),
  220. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  221. mge_options = {'init_type': 'MEDOID',
  222. 'random_inits': 10,
  223. 'time_limit': 600,
  224. 'verbose': 2,
  225. 'refine': False}
  226. save_results = True
  227. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  228. irrelevant_labels = None #
  229. edge_required = False #
  230. # print settings.
  231. print('parameters:')
  232. print('dataset name:', ds_name)
  233. print('mpg_options:', mpg_options)
  234. print('kernel_options:', kernel_options)
  235. print('ged_options:', ged_options)
  236. print('mge_options:', mge_options)
  237. print('save_results:', save_results)
  238. print('irrelevant_labels:', irrelevant_labels)
  239. print()
  240. # generate preimages.
  241. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  242. print('\n-------------------------------------')
  243. print('fit method:', fit_method, '\n')
  244. mpg_options['fit_method'] = fit_method
  245. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  246. def xp_median_preimage_8_2():
  247. """xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
  248. """
  249. # set parameters.
  250. ds_name = 'Monoterpenoides' #
  251. mpg_options = {'fit_method': 'k-graphs',
  252. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  253. 'ds_name': ds_name,
  254. 'parallel': True, # False
  255. 'time_limit_in_sec': 0,
  256. 'max_itrs': 100, #
  257. 'max_itrs_without_update': 3,
  258. 'epsilon_residual': 0.01,
  259. 'epsilon_ec': 0.1,
  260. 'verbose': 2}
  261. kernel_options = {'name': 'PathUpToH',
  262. 'depth': 7, #
  263. 'k_func': 'MinMax', #
  264. 'compute_method': 'trie',
  265. 'parallel': 'imap_unordered',
  266. # 'parallel': None,
  267. 'n_jobs': multiprocessing.cpu_count(),
  268. 'normalize': True,
  269. 'verbose': 2}
  270. ged_options = {'method': 'IPFP',
  271. 'initialization_method': 'RANDOM', # 'NODE'
  272. 'initial_solutions': 10, # 1
  273. 'edit_cost': 'CONSTANT', #
  274. 'attr_distance': 'euclidean',
  275. 'ratio_runs_from_initial_solutions': 1,
  276. 'threads': multiprocessing.cpu_count(),
  277. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  278. mge_options = {'init_type': 'MEDOID',
  279. 'random_inits': 10,
  280. 'time_limit': 600,
  281. 'verbose': 2,
  282. 'refine': False}
  283. save_results = True
  284. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  285. irrelevant_labels = None #
  286. edge_required = False #
  287. # print settings.
  288. print('parameters:')
  289. print('dataset name:', ds_name)
  290. print('mpg_options:', mpg_options)
  291. print('kernel_options:', kernel_options)
  292. print('ged_options:', ged_options)
  293. print('mge_options:', mge_options)
  294. print('save_results:', save_results)
  295. print('irrelevant_labels:', irrelevant_labels)
  296. print()
  297. # generate preimages.
  298. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  299. print('\n-------------------------------------')
  300. print('fit method:', fit_method, '\n')
  301. mpg_options['fit_method'] = fit_method
  302. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  303. def xp_median_preimage_8_3():
  304. """xp 8_3: Monoterpenoides, Treelet, using CONSTANT.
  305. """
  306. from gklearn.utils.kernels import polynomialkernel
  307. # set parameters.
  308. ds_name = 'Monoterpenoides' #
  309. mpg_options = {'fit_method': 'k-graphs',
  310. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  311. 'ds_name': ds_name,
  312. 'parallel': True, # False
  313. 'time_limit_in_sec': 0,
  314. 'max_itrs': 100, #
  315. 'max_itrs_without_update': 3,
  316. 'epsilon_residual': 0.01,
  317. 'epsilon_ec': 0.1,
  318. 'verbose': 2}
  319. pkernel = functools.partial(polynomialkernel, d=2, c=1e+5)
  320. kernel_options = {'name': 'Treelet',
  321. 'sub_kernel': pkernel,
  322. 'parallel': 'imap_unordered',
  323. # 'parallel': None,
  324. 'n_jobs': multiprocessing.cpu_count(),
  325. 'normalize': True,
  326. 'verbose': 2}
  327. ged_options = {'method': 'IPFP',
  328. 'initialization_method': 'RANDOM', # 'NODE'
  329. 'initial_solutions': 10, # 1
  330. 'edit_cost': 'CONSTANT', #
  331. 'attr_distance': 'euclidean',
  332. 'ratio_runs_from_initial_solutions': 1,
  333. 'threads': multiprocessing.cpu_count(),
  334. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  335. mge_options = {'init_type': 'MEDOID',
  336. 'random_inits': 10,
  337. 'time_limit': 600,
  338. 'verbose': 2,
  339. 'refine': False}
  340. save_results = True
  341. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  342. irrelevant_labels = None #
  343. edge_required = False #
  344. # print settings.
  345. print('parameters:')
  346. print('dataset name:', ds_name)
  347. print('mpg_options:', mpg_options)
  348. print('kernel_options:', kernel_options)
  349. print('ged_options:', ged_options)
  350. print('mge_options:', mge_options)
  351. print('save_results:', save_results)
  352. print('irrelevant_labels:', irrelevant_labels)
  353. print()
  354. # generate preimages.
  355. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  356. print('\n-------------------------------------')
  357. print('fit method:', fit_method, '\n')
  358. mpg_options['fit_method'] = fit_method
  359. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  360. def xp_median_preimage_7_1():
  361. """xp 7_1: MUTAG, StructuralSP, using CONSTANT.
  362. """
  363. # set parameters.
  364. ds_name = 'MUTAG' #
  365. mpg_options = {'fit_method': 'k-graphs',
  366. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  367. 'ds_name': ds_name,
  368. 'parallel': True, # False
  369. 'time_limit_in_sec': 0,
  370. 'max_itrs': 100, #
  371. 'max_itrs_without_update': 3,
  372. 'epsilon_residual': 0.01,
  373. 'epsilon_ec': 0.1,
  374. 'verbose': 2}
  375. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  376. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  377. kernel_options = {'name': 'StructuralSP',
  378. 'edge_weight': None,
  379. 'node_kernels': sub_kernels,
  380. 'edge_kernels': sub_kernels,
  381. 'compute_method': 'naive',
  382. 'parallel': 'imap_unordered',
  383. # 'parallel': None,
  384. 'n_jobs': multiprocessing.cpu_count(),
  385. 'normalize': True,
  386. 'verbose': 2}
  387. ged_options = {'method': 'IPFP',
  388. 'initialization_method': 'RANDOM', # 'NODE'
  389. 'initial_solutions': 10, # 1
  390. 'edit_cost': 'CONSTANT', #
  391. 'attr_distance': 'euclidean',
  392. 'ratio_runs_from_initial_solutions': 1,
  393. 'threads': multiprocessing.cpu_count(),
  394. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  395. mge_options = {'init_type': 'MEDOID',
  396. 'random_inits': 10,
  397. 'time_limit': 600,
  398. 'verbose': 2,
  399. 'refine': False}
  400. save_results = True
  401. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  402. irrelevant_labels = None #
  403. edge_required = False #
  404. # print settings.
  405. print('parameters:')
  406. print('dataset name:', ds_name)
  407. print('mpg_options:', mpg_options)
  408. print('kernel_options:', kernel_options)
  409. print('ged_options:', ged_options)
  410. print('mge_options:', mge_options)
  411. print('save_results:', save_results)
  412. print('irrelevant_labels:', irrelevant_labels)
  413. print()
  414. # generate preimages.
  415. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  416. print('\n-------------------------------------')
  417. print('fit method:', fit_method, '\n')
  418. mpg_options['fit_method'] = fit_method
  419. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  420. def xp_median_preimage_7_2():
  421. """xp 7_2: MUTAG, PathUpToH, using CONSTANT.
  422. """
  423. # set parameters.
  424. ds_name = 'MUTAG' #
  425. mpg_options = {'fit_method': 'k-graphs',
  426. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  427. 'ds_name': ds_name,
  428. 'parallel': True, # False
  429. 'time_limit_in_sec': 0,
  430. 'max_itrs': 100, #
  431. 'max_itrs_without_update': 3,
  432. 'epsilon_residual': 0.01,
  433. 'epsilon_ec': 0.1,
  434. 'verbose': 2}
  435. kernel_options = {'name': 'PathUpToH',
  436. 'depth': 2, #
  437. 'k_func': 'MinMax', #
  438. 'compute_method': 'trie',
  439. 'parallel': 'imap_unordered',
  440. # 'parallel': None,
  441. 'n_jobs': multiprocessing.cpu_count(),
  442. 'normalize': True,
  443. 'verbose': 2}
  444. ged_options = {'method': 'IPFP',
  445. 'initialization_method': 'RANDOM', # 'NODE'
  446. 'initial_solutions': 10, # 1
  447. 'edit_cost': 'CONSTANT', #
  448. 'attr_distance': 'euclidean',
  449. 'ratio_runs_from_initial_solutions': 1,
  450. 'threads': multiprocessing.cpu_count(),
  451. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  452. mge_options = {'init_type': 'MEDOID',
  453. 'random_inits': 10,
  454. 'time_limit': 600,
  455. 'verbose': 2,
  456. 'refine': False}
  457. save_results = True
  458. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  459. irrelevant_labels = None #
  460. edge_required = False #
  461. # print settings.
  462. print('parameters:')
  463. print('dataset name:', ds_name)
  464. print('mpg_options:', mpg_options)
  465. print('kernel_options:', kernel_options)
  466. print('ged_options:', ged_options)
  467. print('mge_options:', mge_options)
  468. print('save_results:', save_results)
  469. print('irrelevant_labels:', irrelevant_labels)
  470. print()
  471. # generate preimages.
  472. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  473. print('\n-------------------------------------')
  474. print('fit method:', fit_method, '\n')
  475. mpg_options['fit_method'] = fit_method
  476. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  477. def xp_median_preimage_7_3():
  478. """xp 7_3: MUTAG, Treelet, using CONSTANT.
  479. """
  480. from gklearn.utils.kernels import polynomialkernel
  481. # set parameters.
  482. ds_name = 'MUTAG' #
  483. mpg_options = {'fit_method': 'k-graphs',
  484. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  485. 'ds_name': ds_name,
  486. 'parallel': True, # False
  487. 'time_limit_in_sec': 0,
  488. 'max_itrs': 100, #
  489. 'max_itrs_without_update': 3,
  490. 'epsilon_residual': 0.01,
  491. 'epsilon_ec': 0.1,
  492. 'verbose': 2}
  493. pkernel = functools.partial(polynomialkernel, d=3, c=1e+8)
  494. kernel_options = {'name': 'Treelet',
  495. 'sub_kernel': pkernel,
  496. 'parallel': 'imap_unordered',
  497. # 'parallel': None,
  498. 'n_jobs': multiprocessing.cpu_count(),
  499. 'normalize': True,
  500. 'verbose': 2}
  501. ged_options = {'method': 'IPFP',
  502. 'initialization_method': 'RANDOM', # 'NODE'
  503. 'initial_solutions': 10, # 1
  504. 'edit_cost': 'CONSTANT', #
  505. 'attr_distance': 'euclidean',
  506. 'ratio_runs_from_initial_solutions': 1,
  507. 'threads': multiprocessing.cpu_count(),
  508. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  509. mge_options = {'init_type': 'MEDOID',
  510. 'random_inits': 10,
  511. 'time_limit': 600,
  512. 'verbose': 2,
  513. 'refine': False}
  514. save_results = True
  515. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  516. irrelevant_labels = None #
  517. edge_required = False #
  518. # print settings.
  519. print('parameters:')
  520. print('dataset name:', ds_name)
  521. print('mpg_options:', mpg_options)
  522. print('kernel_options:', kernel_options)
  523. print('ged_options:', ged_options)
  524. print('mge_options:', mge_options)
  525. print('save_results:', save_results)
  526. print('irrelevant_labels:', irrelevant_labels)
  527. print()
  528. # generate preimages.
  529. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  530. print('\n-------------------------------------')
  531. print('fit method:', fit_method, '\n')
  532. mpg_options['fit_method'] = fit_method
  533. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  534. def xp_median_preimage_6_1():
  535. """xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
  536. """
  537. # set parameters.
  538. ds_name = 'COIL-RAG' #
  539. mpg_options = {'fit_method': 'k-graphs',
  540. 'init_ecc': [3, 3, 1, 3, 3, 1], #
  541. 'ds_name': ds_name,
  542. 'parallel': True, # False
  543. 'time_limit_in_sec': 0,
  544. 'max_itrs': 100,
  545. 'max_itrs_without_update': 3,
  546. 'epsilon_residual': 0.01,
  547. 'epsilon_ec': 0.1,
  548. 'verbose': 2}
  549. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  550. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  551. kernel_options = {'name': 'StructuralSP',
  552. 'edge_weight': None,
  553. 'node_kernels': sub_kernels,
  554. 'edge_kernels': sub_kernels,
  555. 'compute_method': 'naive',
  556. 'parallel': 'imap_unordered',
  557. # 'parallel': None,
  558. 'n_jobs': multiprocessing.cpu_count(),
  559. 'normalize': True,
  560. 'verbose': 2}
  561. ged_options = {'method': 'IPFP',
  562. 'initialization_method': 'RANDOM', # 'NODE'
  563. 'initial_solutions': 10, # 1
  564. 'edit_cost': 'NON_SYMBOLIC', #
  565. 'attr_distance': 'euclidean',
  566. 'ratio_runs_from_initial_solutions': 1,
  567. 'threads': multiprocessing.cpu_count(),
  568. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  569. mge_options = {'init_type': 'MEDOID',
  570. 'random_inits': 10,
  571. 'time_limit': 600,
  572. 'verbose': 2,
  573. 'refine': False}
  574. save_results = True
  575. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  576. irrelevant_labels = None #
  577. edge_required = False #
  578. # print settings.
  579. print('parameters:')
  580. print('dataset name:', ds_name)
  581. print('mpg_options:', mpg_options)
  582. print('kernel_options:', kernel_options)
  583. print('ged_options:', ged_options)
  584. print('mge_options:', mge_options)
  585. print('save_results:', save_results)
  586. print('irrelevant_labels:', irrelevant_labels)
  587. print()
  588. # generate preimages.
  589. for fit_method in ['k-graphs'] + ['random'] * 5:
  590. print('\n-------------------------------------')
  591. print('fit method:', fit_method, '\n')
  592. mpg_options['fit_method'] = fit_method
  593. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  594. def xp_median_preimage_6_2():
  595. """xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
  596. """
  597. # set parameters.
  598. ds_name = 'COIL-RAG' #
  599. mpg_options = {'fit_method': 'k-graphs',
  600. 'init_ecc': [3, 3, 1, 3, 3, 1], #
  601. 'ds_name': ds_name,
  602. 'parallel': True, # False
  603. 'time_limit_in_sec': 0,
  604. 'max_itrs': 100,
  605. 'max_itrs_without_update': 3,
  606. 'epsilon_residual': 0.01,
  607. 'epsilon_ec': 0.1,
  608. 'verbose': 2}
  609. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  610. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  611. kernel_options = {'name': 'ShortestPath',
  612. 'edge_weight': None,
  613. 'node_kernels': sub_kernels,
  614. 'parallel': 'imap_unordered',
  615. # 'parallel': None,
  616. 'n_jobs': multiprocessing.cpu_count(),
  617. 'normalize': True,
  618. 'verbose': 2}
  619. ged_options = {'method': 'IPFP',
  620. 'initialization_method': 'RANDOM', # 'NODE'
  621. 'initial_solutions': 10, # 1
  622. 'edit_cost': 'NON_SYMBOLIC', #
  623. 'attr_distance': 'euclidean',
  624. 'ratio_runs_from_initial_solutions': 1,
  625. 'threads': multiprocessing.cpu_count(),
  626. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  627. mge_options = {'init_type': 'MEDOID',
  628. 'random_inits': 10,
  629. 'time_limit': 600,
  630. 'verbose': 2,
  631. 'refine': False}
  632. save_results = True
  633. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  634. irrelevant_labels = None #
  635. edge_required = True #
  636. # print settings.
  637. print('parameters:')
  638. print('dataset name:', ds_name)
  639. print('mpg_options:', mpg_options)
  640. print('kernel_options:', kernel_options)
  641. print('ged_options:', ged_options)
  642. print('mge_options:', mge_options)
  643. print('save_results:', save_results)
  644. print('irrelevant_labels:', irrelevant_labels)
  645. print()
  646. # generate preimages.
  647. for fit_method in ['k-graphs'] + ['random'] * 5:
  648. print('\n-------------------------------------')
  649. print('fit method:', fit_method, '\n')
  650. mpg_options['fit_method'] = fit_method
  651. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  652. def xp_median_preimage_5_1():
  653. """xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
  654. """
  655. # set parameters.
  656. ds_name = 'FRANKENSTEIN' #
  657. mpg_options = {'fit_method': 'k-graphs',
  658. 'init_ecc': [3, 3, 1, 3, 3, 0], #
  659. 'ds_name': ds_name,
  660. 'parallel': True, # False
  661. 'time_limit_in_sec': 0,
  662. 'max_itrs': 100,
  663. 'max_itrs_without_update': 3,
  664. 'epsilon_residual': 0.01,
  665. 'epsilon_ec': 0.1,
  666. 'verbose': 2}
  667. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  668. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  669. kernel_options = {'name': 'StructuralSP',
  670. 'edge_weight': None,
  671. 'node_kernels': sub_kernels,
  672. 'edge_kernels': sub_kernels,
  673. 'compute_method': 'naive',
  674. 'parallel': 'imap_unordered',
  675. # 'parallel': None,
  676. 'n_jobs': multiprocessing.cpu_count(),
  677. 'normalize': True,
  678. 'verbose': 2}
  679. ged_options = {'method': 'IPFP',
  680. 'initialization_method': 'RANDOM', # 'NODE'
  681. 'initial_solutions': 10, # 1
  682. 'edit_cost': 'NON_SYMBOLIC',
  683. 'attr_distance': 'euclidean',
  684. 'ratio_runs_from_initial_solutions': 1,
  685. 'threads': multiprocessing.cpu_count(),
  686. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  687. mge_options = {'init_type': 'MEDOID',
  688. 'random_inits': 10,
  689. 'time_limit': 600,
  690. 'verbose': 2,
  691. 'refine': False}
  692. save_results = True
  693. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  694. irrelevant_labels = None #
  695. edge_required = False #
  696. # print settings.
  697. print('parameters:')
  698. print('dataset name:', ds_name)
  699. print('mpg_options:', mpg_options)
  700. print('kernel_options:', kernel_options)
  701. print('ged_options:', ged_options)
  702. print('mge_options:', mge_options)
  703. print('save_results:', save_results)
  704. print('irrelevant_labels:', irrelevant_labels)
  705. print()
  706. # generate preimages.
  707. for fit_method in ['k-graphs'] + ['random'] * 5:
  708. print('\n-------------------------------------')
  709. print('fit method:', fit_method, '\n')
  710. mpg_options['fit_method'] = fit_method
  711. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  712. def xp_median_preimage_4_1():
  713. """xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
  714. """
  715. # set parameters.
  716. ds_name = 'COLORS-3' #
  717. mpg_options = {'fit_method': 'k-graphs',
  718. 'init_ecc': [3, 3, 1, 3, 3, 0], #
  719. 'ds_name': ds_name,
  720. 'parallel': True, # False
  721. 'time_limit_in_sec': 0,
  722. 'max_itrs': 100,
  723. 'max_itrs_without_update': 3,
  724. 'epsilon_residual': 0.01,
  725. 'epsilon_ec': 0.1,
  726. 'verbose': 2}
  727. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  728. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  729. kernel_options = {'name': 'StructuralSP',
  730. 'edge_weight': None,
  731. 'node_kernels': sub_kernels,
  732. 'edge_kernels': sub_kernels,
  733. 'compute_method': 'naive',
  734. 'parallel': 'imap_unordered',
  735. # 'parallel': None,
  736. 'n_jobs': multiprocessing.cpu_count(),
  737. 'normalize': True,
  738. 'verbose': 2}
  739. ged_options = {'method': 'IPFP',
  740. 'initialization_method': 'RANDOM', # 'NODE'
  741. 'initial_solutions': 10, # 1
  742. 'edit_cost': 'NON_SYMBOLIC',
  743. 'attr_distance': 'euclidean',
  744. 'ratio_runs_from_initial_solutions': 1,
  745. 'threads': multiprocessing.cpu_count(),
  746. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  747. mge_options = {'init_type': 'MEDOID',
  748. 'random_inits': 10,
  749. 'time_limit': 600,
  750. 'verbose': 2,
  751. 'refine': False}
  752. save_results = True
  753. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  754. irrelevant_labels = None #
  755. edge_required = False #
  756. # print settings.
  757. print('parameters:')
  758. print('dataset name:', ds_name)
  759. print('mpg_options:', mpg_options)
  760. print('kernel_options:', kernel_options)
  761. print('ged_options:', ged_options)
  762. print('mge_options:', mge_options)
  763. print('save_results:', save_results)
  764. print('irrelevant_labels:', irrelevant_labels)
  765. print()
  766. # generate preimages.
  767. for fit_method in ['k-graphs'] + ['random'] * 5:
  768. print('\n-------------------------------------')
  769. print('fit method:', fit_method, '\n')
  770. mpg_options['fit_method'] = fit_method
  771. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  772. def xp_median_preimage_3_2():
  773. """xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
  774. """
  775. # set parameters.
  776. ds_name = 'Fingerprint' #
  777. mpg_options = {'fit_method': 'k-graphs',
  778. 'init_ecc': [0.525, 0.525, 0.001, 0.125, 0.125], #
  779. 'ds_name': ds_name,
  780. 'parallel': True, # False
  781. 'time_limit_in_sec': 0,
  782. 'max_itrs': 100,
  783. 'max_itrs_without_update': 3,
  784. 'epsilon_residual': 0.01,
  785. 'epsilon_ec': 0.1,
  786. 'verbose': 2}
  787. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  788. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  789. kernel_options = {'name': 'ShortestPath',
  790. 'edge_weight': None,
  791. 'node_kernels': sub_kernels,
  792. 'parallel': 'imap_unordered',
  793. # 'parallel': None,
  794. 'n_jobs': multiprocessing.cpu_count(),
  795. 'normalize': True,
  796. 'verbose': 2}
  797. ged_options = {'method': 'IPFP',
  798. 'initialization_method': 'RANDOM', # 'NODE'
  799. 'initial_solutions': 10, # 1
  800. 'edit_cost': 'LETTER2',
  801. 'attr_distance': 'euclidean',
  802. 'ratio_runs_from_initial_solutions': 1,
  803. 'threads': multiprocessing.cpu_count(),
  804. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  805. mge_options = {'init_type': 'MEDOID',
  806. 'random_inits': 10,
  807. 'time_limit': 600,
  808. 'verbose': 2,
  809. 'refine': False}
  810. save_results = True
  811. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  812. irrelevant_labels = {'edge_attrs': ['orient', 'angle']} #
  813. edge_required = True #
  814. # print settings.
  815. print('parameters:')
  816. print('dataset name:', ds_name)
  817. print('mpg_options:', mpg_options)
  818. print('kernel_options:', kernel_options)
  819. print('ged_options:', ged_options)
  820. print('mge_options:', mge_options)
  821. print('save_results:', save_results)
  822. print('irrelevant_labels:', irrelevant_labels)
  823. print()
  824. # generate preimages.
  825. for fit_method in ['k-graphs'] + ['random'] * 5:
  826. print('\n-------------------------------------')
  827. print('fit method:', fit_method, '\n')
  828. mpg_options['fit_method'] = fit_method
  829. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  830. def xp_median_preimage_3_1():
  831. """xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
  832. """
  833. # set parameters.
  834. ds_name = 'Fingerprint' #
  835. mpg_options = {'fit_method': 'k-graphs',
  836. 'init_ecc': [0.525, 0.525, 0.001, 0.125, 0.125], #
  837. 'ds_name': ds_name,
  838. 'parallel': True, # False
  839. 'time_limit_in_sec': 0,
  840. 'max_itrs': 100,
  841. 'max_itrs_without_update': 3,
  842. 'epsilon_residual': 0.01,
  843. 'epsilon_ec': 0.1,
  844. 'verbose': 2}
  845. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  846. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  847. kernel_options = {'name': 'StructuralSP',
  848. 'edge_weight': None,
  849. 'node_kernels': sub_kernels,
  850. 'edge_kernels': sub_kernels,
  851. 'compute_method': 'naive',
  852. 'parallel': 'imap_unordered',
  853. # 'parallel': None,
  854. 'n_jobs': multiprocessing.cpu_count(),
  855. 'normalize': True,
  856. 'verbose': 2}
  857. ged_options = {'method': 'IPFP',
  858. 'initialization_method': 'RANDOM', # 'NODE'
  859. 'initial_solutions': 10, # 1
  860. 'edit_cost': 'LETTER2',
  861. 'attr_distance': 'euclidean',
  862. 'ratio_runs_from_initial_solutions': 1,
  863. 'threads': multiprocessing.cpu_count(),
  864. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  865. mge_options = {'init_type': 'MEDOID',
  866. 'random_inits': 10,
  867. 'time_limit': 600,
  868. 'verbose': 2,
  869. 'refine': False}
  870. save_results = True
  871. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  872. irrelevant_labels = {'edge_attrs': ['orient', 'angle']} #
  873. edge_required = False #
  874. # print settings.
  875. print('parameters:')
  876. print('dataset name:', ds_name)
  877. print('mpg_options:', mpg_options)
  878. print('kernel_options:', kernel_options)
  879. print('ged_options:', ged_options)
  880. print('mge_options:', mge_options)
  881. print('save_results:', save_results)
  882. print('irrelevant_labels:', irrelevant_labels)
  883. print()
  884. # generate preimages.
  885. for fit_method in ['k-graphs'] + ['random'] * 5:
  886. print('\n-------------------------------------')
  887. print('fit method:', fit_method, '\n')
  888. mpg_options['fit_method'] = fit_method
  889. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  890. def xp_median_preimage_2_1():
  891. """xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
  892. """
  893. # set parameters.
  894. ds_name = 'COIL-DEL' #
  895. mpg_options = {'fit_method': 'k-graphs',
  896. 'init_ecc': [3, 3, 1, 3, 3],
  897. 'ds_name': ds_name,
  898. 'parallel': True, # False
  899. 'time_limit_in_sec': 0,
  900. 'max_itrs': 100,
  901. 'max_itrs_without_update': 3,
  902. 'epsilon_residual': 0.01,
  903. 'epsilon_ec': 0.1,
  904. 'verbose': 2}
  905. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  906. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  907. kernel_options = {'name': 'StructuralSP',
  908. 'edge_weight': None,
  909. 'node_kernels': sub_kernels,
  910. 'edge_kernels': sub_kernels,
  911. 'compute_method': 'naive',
  912. 'parallel': 'imap_unordered',
  913. # 'parallel': None,
  914. 'n_jobs': multiprocessing.cpu_count(),
  915. 'normalize': True,
  916. 'verbose': 2}
  917. ged_options = {'method': 'IPFP',
  918. 'initialization_method': 'RANDOM', # 'NODE'
  919. 'initial_solutions': 10, # 1
  920. 'edit_cost': 'LETTER2',
  921. 'attr_distance': 'euclidean',
  922. 'ratio_runs_from_initial_solutions': 1,
  923. 'threads': multiprocessing.cpu_count(),
  924. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  925. mge_options = {'init_type': 'MEDOID',
  926. 'random_inits': 10,
  927. 'time_limit': 600,
  928. 'verbose': 2,
  929. 'refine': False}
  930. save_results = True
  931. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  932. irrelevant_labels = {'edge_labels': ['valence']}
  933. # print settings.
  934. print('parameters:')
  935. print('dataset name:', ds_name)
  936. print('mpg_options:', mpg_options)
  937. print('kernel_options:', kernel_options)
  938. print('ged_options:', ged_options)
  939. print('mge_options:', mge_options)
  940. print('save_results:', save_results)
  941. print('irrelevant_labels:', irrelevant_labels)
  942. print()
  943. # # compute gram matrices for each class a priori.
  944. # print('Compute gram matrices for each class a priori.')
  945. # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
  946. # generate preimages.
  947. for fit_method in ['k-graphs'] + ['random'] * 5:
  948. print('\n-------------------------------------')
  949. print('fit method:', fit_method, '\n')
  950. mpg_options['fit_method'] = fit_method
  951. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels)
  952. def xp_median_preimage_1_1():
  953. """xp 1_1: Letter-high, StructuralSP.
  954. """
  955. # set parameters.
  956. ds_name = 'Letter-high'
  957. mpg_options = {'fit_method': 'k-graphs',
  958. 'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425],
  959. 'ds_name': ds_name,
  960. 'parallel': True, # False
  961. 'time_limit_in_sec': 0,
  962. 'max_itrs': 100,
  963. 'max_itrs_without_update': 3,
  964. 'epsilon_residual': 0.01,
  965. 'epsilon_ec': 0.1,
  966. 'verbose': 2}
  967. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  968. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  969. kernel_options = {'name': 'StructuralSP',
  970. 'edge_weight': None,
  971. 'node_kernels': sub_kernels,
  972. 'edge_kernels': sub_kernels,
  973. 'compute_method': 'naive',
  974. 'parallel': 'imap_unordered',
  975. # 'parallel': None,
  976. 'n_jobs': multiprocessing.cpu_count(),
  977. 'normalize': True,
  978. 'verbose': 2}
  979. ged_options = {'method': 'IPFP',
  980. 'initialization_method': 'RANDOM', # 'NODE'
  981. 'initial_solutions': 10, # 1
  982. 'edit_cost': 'LETTER2',
  983. 'attr_distance': 'euclidean',
  984. 'ratio_runs_from_initial_solutions': 1,
  985. 'threads': multiprocessing.cpu_count(),
  986. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  987. mge_options = {'init_type': 'MEDOID',
  988. 'random_inits': 10,
  989. 'time_limit': 600,
  990. 'verbose': 2,
  991. 'refine': False}
  992. save_results = True
  993. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  994. # print settings.
  995. print('parameters:')
  996. print('dataset name:', ds_name)
  997. print('mpg_options:', mpg_options)
  998. print('kernel_options:', kernel_options)
  999. print('ged_options:', ged_options)
  1000. print('mge_options:', mge_options)
  1001. print('save_results:', save_results)
  1002. # generate preimages.
  1003. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1004. print('\n-------------------------------------')
  1005. print('fit method:', fit_method, '\n')
  1006. mpg_options['fit_method'] = fit_method
  1007. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
  1008. def xp_median_preimage_1_2():
  1009. """xp 1_2: Letter-high, ShortestPath.
  1010. """
  1011. # set parameters.
  1012. ds_name = 'Letter-high'
  1013. mpg_options = {'fit_method': 'k-graphs',
  1014. 'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425],
  1015. 'ds_name': ds_name,
  1016. 'parallel': True, # False
  1017. 'time_limit_in_sec': 0,
  1018. 'max_itrs': 100,
  1019. 'max_itrs_without_update': 3,
  1020. 'epsilon_residual': 0.01,
  1021. 'epsilon_ec': 0.1,
  1022. 'verbose': 2}
  1023. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1024. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1025. kernel_options = {'name': 'ShortestPath',
  1026. 'edge_weight': None,
  1027. 'node_kernels': sub_kernels,
  1028. 'parallel': 'imap_unordered',
  1029. # 'parallel': None,
  1030. 'n_jobs': multiprocessing.cpu_count(),
  1031. 'normalize': True,
  1032. 'verbose': 2}
  1033. ged_options = {'method': 'IPFP',
  1034. 'initialization_method': 'RANDOM', # 'NODE'
  1035. 'initial_solutions': 10, # 1
  1036. 'edit_cost': 'LETTER2',
  1037. 'attr_distance': 'euclidean',
  1038. 'ratio_runs_from_initial_solutions': 1,
  1039. 'threads': multiprocessing.cpu_count(),
  1040. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1041. mge_options = {'init_type': 'MEDOID',
  1042. 'random_inits': 10,
  1043. 'time_limit': 600,
  1044. 'verbose': 2,
  1045. 'refine': False}
  1046. save_results = True
  1047. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1048. irrelevant_labels = None #
  1049. edge_required = True #
  1050. # print settings.
  1051. print('parameters:')
  1052. print('dataset name:', ds_name)
  1053. print('mpg_options:', mpg_options)
  1054. print('kernel_options:', kernel_options)
  1055. print('ged_options:', ged_options)
  1056. print('mge_options:', mge_options)
  1057. print('save_results:', save_results)
  1058. print('irrelevant_labels:', irrelevant_labels)
  1059. print()
  1060. # generate preimages.
  1061. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1062. print('\n-------------------------------------')
  1063. print('fit method:', fit_method, '\n')
  1064. mpg_options['fit_method'] = fit_method
  1065. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1066. def xp_median_preimage_10_1():
  1067. """xp 10_1: Letter-med, StructuralSP.
  1068. """
  1069. # set parameters.
  1070. ds_name = 'Letter-med'
  1071. mpg_options = {'fit_method': 'k-graphs',
  1072. 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475],
  1073. 'ds_name': ds_name,
  1074. 'parallel': True, # False
  1075. 'time_limit_in_sec': 0,
  1076. 'max_itrs': 100,
  1077. 'max_itrs_without_update': 3,
  1078. 'epsilon_residual': 0.01,
  1079. 'epsilon_ec': 0.1,
  1080. 'verbose': 2}
  1081. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1082. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1083. kernel_options = {'name': 'StructuralSP',
  1084. 'edge_weight': None,
  1085. 'node_kernels': sub_kernels,
  1086. 'edge_kernels': sub_kernels,
  1087. 'compute_method': 'naive',
  1088. 'parallel': 'imap_unordered',
  1089. # 'parallel': None,
  1090. 'n_jobs': multiprocessing.cpu_count(),
  1091. 'normalize': True,
  1092. 'verbose': 2}
  1093. ged_options = {'method': 'IPFP',
  1094. 'initialization_method': 'RANDOM', # 'NODE'
  1095. 'initial_solutions': 10, # 1
  1096. 'edit_cost': 'LETTER2',
  1097. 'attr_distance': 'euclidean',
  1098. 'ratio_runs_from_initial_solutions': 1,
  1099. 'threads': multiprocessing.cpu_count(),
  1100. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1101. mge_options = {'init_type': 'MEDOID',
  1102. 'random_inits': 10,
  1103. 'time_limit': 600,
  1104. 'verbose': 2,
  1105. 'refine': False}
  1106. save_results = True
  1107. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1108. # print settings.
  1109. print('parameters:')
  1110. print('dataset name:', ds_name)
  1111. print('mpg_options:', mpg_options)
  1112. print('kernel_options:', kernel_options)
  1113. print('ged_options:', ged_options)
  1114. print('mge_options:', mge_options)
  1115. print('save_results:', save_results)
  1116. # generate preimages.
  1117. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1118. print('\n-------------------------------------')
  1119. print('fit method:', fit_method, '\n')
  1120. mpg_options['fit_method'] = fit_method
  1121. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
  1122. def xp_median_preimage_10_2():
  1123. """xp 10_2: Letter-med, ShortestPath.
  1124. """
  1125. # set parameters.
  1126. ds_name = 'Letter-med'
  1127. mpg_options = {'fit_method': 'k-graphs',
  1128. 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475],
  1129. 'ds_name': ds_name,
  1130. 'parallel': True, # False
  1131. 'time_limit_in_sec': 0,
  1132. 'max_itrs': 100,
  1133. 'max_itrs_without_update': 3,
  1134. 'epsilon_residual': 0.01,
  1135. 'epsilon_ec': 0.1,
  1136. 'verbose': 2}
  1137. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1138. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1139. kernel_options = {'name': 'ShortestPath',
  1140. 'edge_weight': None,
  1141. 'node_kernels': sub_kernels,
  1142. 'parallel': 'imap_unordered',
  1143. # 'parallel': None,
  1144. 'n_jobs': multiprocessing.cpu_count(),
  1145. 'normalize': True,
  1146. 'verbose': 2}
  1147. ged_options = {'method': 'IPFP',
  1148. 'initialization_method': 'RANDOM', # 'NODE'
  1149. 'initial_solutions': 10, # 1
  1150. 'edit_cost': 'LETTER2',
  1151. 'attr_distance': 'euclidean',
  1152. 'ratio_runs_from_initial_solutions': 1,
  1153. 'threads': multiprocessing.cpu_count(),
  1154. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1155. mge_options = {'init_type': 'MEDOID',
  1156. 'random_inits': 10,
  1157. 'time_limit': 600,
  1158. 'verbose': 2,
  1159. 'refine': False}
  1160. save_results = True
  1161. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1162. irrelevant_labels = None #
  1163. edge_required = True #
  1164. # print settings.
  1165. print('parameters:')
  1166. print('dataset name:', ds_name)
  1167. print('mpg_options:', mpg_options)
  1168. print('kernel_options:', kernel_options)
  1169. print('ged_options:', ged_options)
  1170. print('mge_options:', mge_options)
  1171. print('save_results:', save_results)
  1172. print('irrelevant_labels:', irrelevant_labels)
  1173. print()
  1174. # generate preimages.
  1175. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1176. print('\n-------------------------------------')
  1177. print('fit method:', fit_method, '\n')
  1178. mpg_options['fit_method'] = fit_method
  1179. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1180. def xp_median_preimage_11_1():
  1181. """xp 11_1: Letter-low, StructuralSP.
  1182. """
  1183. # set parameters.
  1184. ds_name = 'Letter-low'
  1185. mpg_options = {'fit_method': 'k-graphs',
  1186. 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075],
  1187. 'ds_name': ds_name,
  1188. 'parallel': True, # False
  1189. 'time_limit_in_sec': 0,
  1190. 'max_itrs': 100,
  1191. 'max_itrs_without_update': 3,
  1192. 'epsilon_residual': 0.01,
  1193. 'epsilon_ec': 0.1,
  1194. 'verbose': 2}
  1195. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1196. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1197. kernel_options = {'name': 'StructuralSP',
  1198. 'edge_weight': None,
  1199. 'node_kernels': sub_kernels,
  1200. 'edge_kernels': sub_kernels,
  1201. 'compute_method': 'naive',
  1202. 'parallel': 'imap_unordered',
  1203. # 'parallel': None,
  1204. 'n_jobs': multiprocessing.cpu_count(),
  1205. 'normalize': True,
  1206. 'verbose': 2}
  1207. ged_options = {'method': 'IPFP',
  1208. 'initialization_method': 'RANDOM', # 'NODE'
  1209. 'initial_solutions': 10, # 1
  1210. 'edit_cost': 'LETTER2',
  1211. 'attr_distance': 'euclidean',
  1212. 'ratio_runs_from_initial_solutions': 1,
  1213. 'threads': multiprocessing.cpu_count(),
  1214. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1215. mge_options = {'init_type': 'MEDOID',
  1216. 'random_inits': 10,
  1217. 'time_limit': 600,
  1218. 'verbose': 2,
  1219. 'refine': False}
  1220. save_results = True
  1221. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1222. # print settings.
  1223. print('parameters:')
  1224. print('dataset name:', ds_name)
  1225. print('mpg_options:', mpg_options)
  1226. print('kernel_options:', kernel_options)
  1227. print('ged_options:', ged_options)
  1228. print('mge_options:', mge_options)
  1229. print('save_results:', save_results)
  1230. # generate preimages.
  1231. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1232. print('\n-------------------------------------')
  1233. print('fit method:', fit_method, '\n')
  1234. mpg_options['fit_method'] = fit_method
  1235. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
  1236. def xp_median_preimage_11_2():
  1237. """xp 11_2: Letter-low, ShortestPath.
  1238. """
  1239. # set parameters.
  1240. ds_name = 'Letter-low'
  1241. mpg_options = {'fit_method': 'k-graphs',
  1242. 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075],
  1243. 'ds_name': ds_name,
  1244. 'parallel': True, # False
  1245. 'time_limit_in_sec': 0,
  1246. 'max_itrs': 100,
  1247. 'max_itrs_without_update': 3,
  1248. 'epsilon_residual': 0.01,
  1249. 'epsilon_ec': 0.1,
  1250. 'verbose': 2}
  1251. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1252. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1253. kernel_options = {'name': 'ShortestPath',
  1254. 'edge_weight': None,
  1255. 'node_kernels': sub_kernels,
  1256. 'parallel': 'imap_unordered',
  1257. # 'parallel': None,
  1258. 'n_jobs': multiprocessing.cpu_count(),
  1259. 'normalize': True,
  1260. 'verbose': 2}
  1261. ged_options = {'method': 'IPFP',
  1262. 'initialization_method': 'RANDOM', # 'NODE'
  1263. 'initial_solutions': 10, # 1
  1264. 'edit_cost': 'LETTER2',
  1265. 'attr_distance': 'euclidean',
  1266. 'ratio_runs_from_initial_solutions': 1,
  1267. 'threads': multiprocessing.cpu_count(),
  1268. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1269. mge_options = {'init_type': 'MEDOID',
  1270. 'random_inits': 10,
  1271. 'time_limit': 600,
  1272. 'verbose': 2,
  1273. 'refine': False}
  1274. save_results = True
  1275. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1276. irrelevant_labels = None #
  1277. edge_required = True #
  1278. # print settings.
  1279. print('parameters:')
  1280. print('dataset name:', ds_name)
  1281. print('mpg_options:', mpg_options)
  1282. print('kernel_options:', kernel_options)
  1283. print('ged_options:', ged_options)
  1284. print('mge_options:', mge_options)
  1285. print('save_results:', save_results)
  1286. print('irrelevant_labels:', irrelevant_labels)
  1287. print()
  1288. # generate preimages.
  1289. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1290. print('\n-------------------------------------')
  1291. print('fit method:', fit_method, '\n')
  1292. mpg_options['fit_method'] = fit_method
  1293. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1294. if __name__ == "__main__":
  1295. #### xp 1_1: Letter-high, StructuralSP.
  1296. # xp_median_preimage_1_1()
  1297. #### xp 1_2: Letter-high, ShortestPath.
  1298. # xp_median_preimage_1_2()
  1299. #### xp 10_1: Letter-med, StructuralSP.
  1300. # xp_median_preimage_10_1()
  1301. #### xp 10_2: Letter-med, ShortestPath.
  1302. # xp_median_preimage_10_2()
  1303. #### xp 11_1: Letter-low, StructuralSP.
  1304. # xp_median_preimage_11_1()
  1305. #### xp 11_2: Letter-low, ShortestPath.
  1306. # xp_median_preimage_11_2()
  1307. #### xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
  1308. # xp_median_preimage_2_1()
  1309. #### xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
  1310. # xp_median_preimage_3_1()
  1311. #### xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
  1312. # xp_median_preimage_3_2()
  1313. #### xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
  1314. # xp_median_preimage_4_1()
  1315. #### xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
  1316. # xp_median_preimage_5_1()
  1317. #### xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
  1318. # xp_median_preimage_6_1()
  1319. #### xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
  1320. # xp_median_preimage_6_2()
  1321. #### xp 7_1: MUTAG, StructuralSP, using CONSTANT.
  1322. # xp_median_preimage_7_1()
  1323. #### xp 7_2: MUTAG, PathUpToH, using CONSTANT.
  1324. # xp_median_preimage_7_2()
  1325. #### xp 7_3: MUTAG, Treelet, using CONSTANT.
  1326. # xp_median_preimage_7_3()
  1327. #### xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
  1328. # xp_median_preimage_8_1()
  1329. #### xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
  1330. # xp_median_preimage_8_2()
  1331. #### xp 8_3: Monoterpenoides, Treelet, using CONSTANT.
  1332. # xp_median_preimage_8_3()
  1333. #### xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
  1334. # xp_median_preimage_9_1()
  1335. #### xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
  1336. # xp_median_preimage_9_2()
  1337. #### xp 9_3: MAO, Treelet, using CONSTANT.
  1338. xp_median_preimage_9_3()

A Python package for graph kernels, graph edit distances and graph pre-image problem.