You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

utils.html 38 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451
  1. <!DOCTYPE html>
  2. <!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
  3. <!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
  4. <head>
  5. <meta charset="utf-8">
  6. <meta name="viewport" content="width=device-width, initial-scale=1.0">
  7. <title>pygraph.utils.utils &mdash; py-graph documentation</title>
  8. <script type="text/javascript" src="../../../_static/js/modernizr.min.js"></script>
  9. <script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
  10. <script type="text/javascript" src="../../../_static/jquery.js"></script>
  11. <script type="text/javascript" src="../../../_static/underscore.js"></script>
  12. <script type="text/javascript" src="../../../_static/doctools.js"></script>
  13. <script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
  14. <script type="text/javascript" src="../../../_static/js/theme.js"></script>
  15. <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
  16. <link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
  17. <link rel="index" title="Index" href="../../../genindex.html" />
  18. <link rel="search" title="Search" href="../../../search.html" />
  19. </head>
  20. <body class="wy-body-for-nav">
  21. <div class="wy-grid-for-nav">
  22. <nav data-toggle="wy-nav-shift" class="wy-nav-side">
  23. <div class="wy-side-scroll">
  24. <div class="wy-side-nav-search" >
  25. <a href="../../../index.html" class="icon icon-home"> py-graph
  26. </a>
  27. <div class="version">
  28. 1.0
  29. </div>
  30. <div role="search">
  31. <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
  32. <input type="text" name="q" placeholder="Search docs" />
  33. <input type="hidden" name="check_keywords" value="yes" />
  34. <input type="hidden" name="area" value="default" />
  35. </form>
  36. </div>
  37. </div>
  38. <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
  39. <!-- Local TOC -->
  40. <div class="local-toc"></div>
  41. </div>
  42. </div>
  43. </nav>
  44. <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
  45. <nav class="wy-nav-top" aria-label="top navigation">
  46. <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
  47. <a href="../../../index.html">py-graph</a>
  48. </nav>
  49. <div class="wy-nav-content">
  50. <div class="rst-content">
  51. <div role="navigation" aria-label="breadcrumbs navigation">
  52. <ul class="wy-breadcrumbs">
  53. <li><a href="../../../index.html">Docs</a> &raquo;</li>
  54. <li><a href="../../index.html">Module code</a> &raquo;</li>
  55. <li>pygraph.utils.utils</li>
  56. <li class="wy-breadcrumbs-aside">
  57. </li>
  58. </ul>
  59. <hr/>
  60. </div>
  61. <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
  62. <div itemprop="articleBody">
  63. <h1>Source code for pygraph.utils.utils</h1><div class="highlight"><pre>
  64. <span></span><span class="kn">import</span> <span class="nn">networkx</span> <span class="k">as</span> <span class="nn">nx</span>
  65. <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
  66. <span class="kn">from</span> <span class="nn">copy</span> <span class="k">import</span> <span class="n">deepcopy</span>
  67. <span class="c1">#from itertools import product</span>
  68. <span class="c1"># from tqdm import tqdm</span>
  69. <div class="viewcode-block" id="getSPLengths"><a class="viewcode-back" href="../../../pygraph.utils.html#pygraph.utils.utils.getSPLengths">[docs]</a><span class="k">def</span> <span class="nf">getSPLengths</span><span class="p">(</span><span class="n">G1</span><span class="p">):</span>
  70. <span class="n">sp</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">shortest_path</span><span class="p">(</span><span class="n">G1</span><span class="p">)</span>
  71. <span class="n">distances</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">G1</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">(),</span> <span class="n">G1</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">()))</span>
  72. <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">sp</span><span class="o">.</span><span class="n">keys</span><span class="p">():</span>
  73. <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="n">sp</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">keys</span><span class="p">():</span>
  74. <span class="n">distances</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">sp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">])</span> <span class="o">-</span> <span class="mi">1</span>
  75. <span class="k">return</span> <span class="n">distances</span></div>
  76. <div class="viewcode-block" id="getSPGraph"><a class="viewcode-back" href="../../../pygraph.utils.html#pygraph.utils.utils.getSPGraph">[docs]</a><span class="k">def</span> <span class="nf">getSPGraph</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">edge_weight</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
  77. <span class="sd">&quot;&quot;&quot;Transform graph G to its corresponding shortest-paths graph.</span>
  78. <span class="sd"> Parameters</span>
  79. <span class="sd"> ----------</span>
  80. <span class="sd"> G : NetworkX graph</span>
  81. <span class="sd"> The graph to be tramsformed.</span>
  82. <span class="sd"> edge_weight : string</span>
  83. <span class="sd"> edge attribute corresponding to the edge weight.</span>
  84. <span class="sd"> Return</span>
  85. <span class="sd"> ------</span>
  86. <span class="sd"> S : NetworkX graph</span>
  87. <span class="sd"> The shortest-paths graph corresponding to G.</span>
  88. <span class="sd"> Notes</span>
  89. <span class="sd"> ------</span>
  90. <span class="sd"> For an input graph G, its corresponding shortest-paths graph S contains the same set of nodes as G, while there exists an edge between all nodes in S which are connected by a walk in G. Every edge in S between two nodes is labeled by the shortest distance between these two nodes.</span>
  91. <span class="sd"> References</span>
  92. <span class="sd"> ----------</span>
  93. <span class="sd"> [1] Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData Mining, Fifth IEEE International Conference on 2005 Nov 27 (pp. 8-pp). IEEE.</span>
  94. <span class="sd"> &quot;&quot;&quot;</span>
  95. <span class="k">return</span> <span class="n">floydTransformation</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">edge_weight</span><span class="o">=</span><span class="n">edge_weight</span><span class="p">)</span></div>
  96. <div class="viewcode-block" id="floydTransformation"><a class="viewcode-back" href="../../../pygraph.utils.html#pygraph.utils.utils.floydTransformation">[docs]</a><span class="k">def</span> <span class="nf">floydTransformation</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">edge_weight</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
  97. <span class="sd">&quot;&quot;&quot;Transform graph G to its corresponding shortest-paths graph using Floyd-transformation.</span>
  98. <span class="sd"> Parameters</span>
  99. <span class="sd"> ----------</span>
  100. <span class="sd"> G : NetworkX graph</span>
  101. <span class="sd"> The graph to be tramsformed.</span>
  102. <span class="sd"> edge_weight : string</span>
  103. <span class="sd"> edge attribute corresponding to the edge weight. The default edge weight is bond_type.</span>
  104. <span class="sd"> Return</span>
  105. <span class="sd"> ------</span>
  106. <span class="sd"> S : NetworkX graph</span>
  107. <span class="sd"> The shortest-paths graph corresponding to G.</span>
  108. <span class="sd"> References</span>
  109. <span class="sd"> ----------</span>
  110. <span class="sd"> [1] Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData Mining, Fifth IEEE International Conference on 2005 Nov 27 (pp. 8-pp). IEEE.</span>
  111. <span class="sd"> &quot;&quot;&quot;</span>
  112. <span class="n">spMatrix</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">floyd_warshall_numpy</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">edge_weight</span><span class="p">)</span>
  113. <span class="n">S</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">Graph</span><span class="p">()</span>
  114. <span class="n">S</span><span class="o">.</span><span class="n">add_nodes_from</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">nodes</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
  115. <span class="n">ns</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">nodes</span><span class="p">())</span>
  116. <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">G</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">()):</span>
  117. <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">i</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">G</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">()):</span>
  118. <span class="k">if</span> <span class="n">spMatrix</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">j</span><span class="p">]</span> <span class="o">!=</span> <span class="n">np</span><span class="o">.</span><span class="n">inf</span><span class="p">:</span>
  119. <span class="n">S</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">ns</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">ns</span><span class="p">[</span><span class="n">j</span><span class="p">],</span> <span class="n">cost</span><span class="o">=</span><span class="n">spMatrix</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">j</span><span class="p">])</span>
  120. <span class="k">return</span> <span class="n">S</span></div>
  121. <div class="viewcode-block" id="untotterTransformation"><a class="viewcode-back" href="../../../pygraph.utils.html#pygraph.utils.utils.untotterTransformation">[docs]</a><span class="k">def</span> <span class="nf">untotterTransformation</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">node_label</span><span class="p">,</span> <span class="n">edge_label</span><span class="p">):</span>
  122. <span class="sd">&quot;&quot;&quot;Transform graph G according to Mahé et al.&#39;s work to filter out tottering patterns of marginalized kernel and tree pattern kernel.</span>
  123. <span class="sd"> Parameters</span>
  124. <span class="sd"> ----------</span>
  125. <span class="sd"> G : NetworkX graph</span>
  126. <span class="sd"> The graph to be tramsformed.</span>
  127. <span class="sd"> node_label : string</span>
  128. <span class="sd"> node attribute used as label. The default node label is &#39;atom&#39;.</span>
  129. <span class="sd"> edge_label : string</span>
  130. <span class="sd"> edge attribute used as label. The default edge label is &#39;bond_type&#39;.</span>
  131. <span class="sd"> Return</span>
  132. <span class="sd"> ------</span>
  133. <span class="sd"> gt : NetworkX graph</span>
  134. <span class="sd"> The transformed graph corresponding to G.</span>
  135. <span class="sd"> References</span>
  136. <span class="sd"> ----------</span>
  137. <span class="sd"> [1] Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and Jean-Philippe Vert. Extensions of marginalized graph kernels. In Proceedings of the twenty-first international conference on Machine learning, page 70. ACM, 2004.</span>
  138. <span class="sd"> &quot;&quot;&quot;</span>
  139. <span class="c1"># arrange all graphs in a list</span>
  140. <span class="n">G</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">to_directed</span><span class="p">()</span>
  141. <span class="n">gt</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">Graph</span><span class="p">()</span>
  142. <span class="n">gt</span><span class="o">.</span><span class="n">graph</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">graph</span>
  143. <span class="n">gt</span><span class="o">.</span><span class="n">add_nodes_from</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">nodes</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
  144. <span class="k">for</span> <span class="n">edge</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">():</span>
  145. <span class="n">gt</span><span class="o">.</span><span class="n">add_node</span><span class="p">(</span><span class="n">edge</span><span class="p">)</span>
  146. <span class="n">gt</span><span class="o">.</span><span class="n">node</span><span class="p">[</span><span class="n">edge</span><span class="p">]</span><span class="o">.</span><span class="n">update</span><span class="p">({</span><span class="n">node_label</span><span class="p">:</span> <span class="n">G</span><span class="o">.</span><span class="n">node</span><span class="p">[</span><span class="n">edge</span><span class="p">[</span><span class="mi">1</span><span class="p">]][</span><span class="n">node_label</span><span class="p">]})</span>
  147. <span class="n">gt</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">edge</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">edge</span><span class="p">)</span>
  148. <span class="n">gt</span><span class="o">.</span><span class="n">edges</span><span class="p">[</span><span class="n">edge</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">edge</span><span class="p">]</span><span class="o">.</span><span class="n">update</span><span class="p">({</span>
  149. <span class="n">edge_label</span><span class="p">:</span>
  150. <span class="n">G</span><span class="p">[</span><span class="n">edge</span><span class="p">[</span><span class="mi">0</span><span class="p">]][</span><span class="n">edge</span><span class="p">[</span><span class="mi">1</span><span class="p">]][</span><span class="n">edge_label</span><span class="p">]</span>
  151. <span class="p">})</span>
  152. <span class="k">for</span> <span class="n">neighbor</span> <span class="ow">in</span> <span class="n">G</span><span class="p">[</span><span class="n">edge</span><span class="p">[</span><span class="mi">1</span><span class="p">]]:</span>
  153. <span class="k">if</span> <span class="n">neighbor</span> <span class="o">!=</span> <span class="n">edge</span><span class="p">[</span><span class="mi">0</span><span class="p">]:</span>
  154. <span class="n">gt</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">edge</span><span class="p">,</span> <span class="p">(</span><span class="n">edge</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">neighbor</span><span class="p">))</span>
  155. <span class="n">gt</span><span class="o">.</span><span class="n">edges</span><span class="p">[</span><span class="n">edge</span><span class="p">,</span> <span class="p">(</span><span class="n">edge</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">neighbor</span><span class="p">)]</span><span class="o">.</span><span class="n">update</span><span class="p">({</span>
  156. <span class="n">edge_label</span><span class="p">:</span>
  157. <span class="n">G</span><span class="p">[</span><span class="n">edge</span><span class="p">[</span><span class="mi">1</span><span class="p">]][</span><span class="n">neighbor</span><span class="p">][</span><span class="n">edge_label</span><span class="p">]</span>
  158. <span class="p">})</span>
  159. <span class="c1"># nx.draw_networkx(gt)</span>
  160. <span class="c1"># plt.show()</span>
  161. <span class="c1"># relabel nodes using consecutive integers for convenience of kernel calculation.</span>
  162. <span class="n">gt</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">convert_node_labels_to_integers</span><span class="p">(</span>
  163. <span class="n">gt</span><span class="p">,</span> <span class="n">first_label</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">label_attribute</span><span class="o">=</span><span class="s1">&#39;label_orignal&#39;</span><span class="p">)</span>
  164. <span class="k">return</span> <span class="n">gt</span></div>
  165. <div class="viewcode-block" id="direct_product"><a class="viewcode-back" href="../../../pygraph.utils.html#pygraph.utils.utils.direct_product">[docs]</a><span class="k">def</span> <span class="nf">direct_product</span><span class="p">(</span><span class="n">G1</span><span class="p">,</span> <span class="n">G2</span><span class="p">,</span> <span class="n">node_label</span><span class="p">,</span> <span class="n">edge_label</span><span class="p">):</span>
  166. <span class="sd">&quot;&quot;&quot;Return the direct/tensor product of directed graphs G1 and G2.</span>
  167. <span class="sd"> Parameters</span>
  168. <span class="sd"> ----------</span>
  169. <span class="sd"> G1, G2 : NetworkX graph</span>
  170. <span class="sd"> The original graphs.</span>
  171. <span class="sd"> node_label : string</span>
  172. <span class="sd"> node attribute used as label. The default node label is &#39;atom&#39;.</span>
  173. <span class="sd"> edge_label : string</span>
  174. <span class="sd"> edge attribute used as label. The default edge label is &#39;bond_type&#39;.</span>
  175. <span class="sd"> Return</span>
  176. <span class="sd"> ------</span>
  177. <span class="sd"> gt : NetworkX graph</span>
  178. <span class="sd"> The direct product graph of G1 and G2.</span>
  179. <span class="sd"> Notes</span>
  180. <span class="sd"> -----</span>
  181. <span class="sd"> This method differs from networkx.tensor_product in that this method only adds nodes and edges in G1 and G2 that have the same labels to the direct product graph.</span>
  182. <span class="sd"> References</span>
  183. <span class="sd"> ----------</span>
  184. <span class="sd"> [1] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient alternatives. Learning Theory and Kernel Machines, pages 129–143, 2003.</span>
  185. <span class="sd"> &quot;&quot;&quot;</span>
  186. <span class="c1"># arrange all graphs in a list</span>
  187. <span class="kn">from</span> <span class="nn">itertools</span> <span class="k">import</span> <span class="n">product</span>
  188. <span class="c1"># G = G.to_directed()</span>
  189. <span class="n">gt</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">DiGraph</span><span class="p">()</span>
  190. <span class="c1"># add nodes</span>
  191. <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">product</span><span class="p">(</span><span class="n">G1</span><span class="p">,</span> <span class="n">G2</span><span class="p">):</span>
  192. <span class="k">if</span> <span class="n">G1</span><span class="o">.</span><span class="n">nodes</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">node_label</span><span class="p">]</span> <span class="o">==</span> <span class="n">G2</span><span class="o">.</span><span class="n">nodes</span><span class="p">[</span><span class="n">v</span><span class="p">][</span><span class="n">node_label</span><span class="p">]:</span>
  193. <span class="n">gt</span><span class="o">.</span><span class="n">add_node</span><span class="p">((</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">))</span>
  194. <span class="n">gt</span><span class="o">.</span><span class="n">nodes</span><span class="p">[(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)]</span><span class="o">.</span><span class="n">update</span><span class="p">({</span><span class="n">node_label</span><span class="p">:</span> <span class="n">G1</span><span class="o">.</span><span class="n">nodes</span><span class="p">[</span><span class="n">u</span><span class="p">][</span><span class="n">node_label</span><span class="p">]})</span>
  195. <span class="c1"># add edges, faster for sparse graphs (no so many edges), which is the most case for now.</span>
  196. <span class="k">for</span> <span class="p">(</span><span class="n">u1</span><span class="p">,</span> <span class="n">v1</span><span class="p">),</span> <span class="p">(</span><span class="n">u2</span><span class="p">,</span> <span class="n">v2</span><span class="p">)</span> <span class="ow">in</span> <span class="n">product</span><span class="p">(</span><span class="n">G1</span><span class="o">.</span><span class="n">edges</span><span class="p">,</span> <span class="n">G2</span><span class="o">.</span><span class="n">edges</span><span class="p">):</span>
  197. <span class="k">if</span> <span class="p">(</span><span class="n">u1</span><span class="p">,</span> <span class="n">u2</span><span class="p">)</span> <span class="ow">in</span> <span class="n">gt</span> <span class="ow">and</span> <span class="p">(</span>
  198. <span class="n">v1</span><span class="p">,</span> <span class="n">v2</span>
  199. <span class="p">)</span> <span class="ow">in</span> <span class="n">gt</span> <span class="ow">and</span> <span class="n">G1</span><span class="o">.</span><span class="n">edges</span><span class="p">[</span><span class="n">u1</span><span class="p">,</span> <span class="n">v1</span><span class="p">][</span><span class="n">edge_label</span><span class="p">]</span> <span class="o">==</span> <span class="n">G2</span><span class="o">.</span><span class="n">edges</span><span class="p">[</span><span class="n">u2</span><span class="p">,</span>
  200. <span class="n">v2</span><span class="p">][</span><span class="n">edge_label</span><span class="p">]:</span>
  201. <span class="n">gt</span><span class="o">.</span><span class="n">add_edge</span><span class="p">((</span><span class="n">u1</span><span class="p">,</span> <span class="n">u2</span><span class="p">),</span> <span class="p">(</span><span class="n">v1</span><span class="p">,</span> <span class="n">v2</span><span class="p">))</span>
  202. <span class="n">gt</span><span class="o">.</span><span class="n">edges</span><span class="p">[(</span><span class="n">u1</span><span class="p">,</span> <span class="n">u2</span><span class="p">),</span> <span class="p">(</span><span class="n">v1</span><span class="p">,</span> <span class="n">v2</span><span class="p">)]</span><span class="o">.</span><span class="n">update</span><span class="p">({</span>
  203. <span class="n">edge_label</span><span class="p">:</span>
  204. <span class="n">G1</span><span class="o">.</span><span class="n">edges</span><span class="p">[</span><span class="n">u1</span><span class="p">,</span> <span class="n">v1</span><span class="p">][</span><span class="n">edge_label</span><span class="p">]</span>
  205. <span class="p">})</span>
  206. <span class="c1"># # add edges, faster for dense graphs (a lot of edges, complete graph would be super).</span>
  207. <span class="c1"># for u, v in product(gt, gt):</span>
  208. <span class="c1"># if (u[0], v[0]) in G1.edges and (</span>
  209. <span class="c1"># u[1], v[1]</span>
  210. <span class="c1"># ) in G2.edges and G1.edges[u[0],</span>
  211. <span class="c1"># v[0]][edge_label] == G2.edges[u[1],</span>
  212. <span class="c1"># v[1]][edge_label]:</span>
  213. <span class="c1"># gt.add_edge((u[0], u[1]), (v[0], v[1]))</span>
  214. <span class="c1"># gt.edges[(u[0], u[1]), (v[0], v[1])].update({</span>
  215. <span class="c1"># edge_label:</span>
  216. <span class="c1"># G1.edges[u[0], v[0]][edge_label]</span>
  217. <span class="c1"># })</span>
  218. <span class="c1"># relabel nodes using consecutive integers for convenience of kernel calculation.</span>
  219. <span class="c1"># gt = nx.convert_node_labels_to_integers(</span>
  220. <span class="c1"># gt, first_label=0, label_attribute=&#39;label_orignal&#39;)</span>
  221. <span class="k">return</span> <span class="n">gt</span></div>
  222. <div class="viewcode-block" id="graph_deepcopy"><a class="viewcode-back" href="../../../pygraph.utils.html#pygraph.utils.utils.graph_deepcopy">[docs]</a><span class="k">def</span> <span class="nf">graph_deepcopy</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
  223. <span class="sd">&quot;&quot;&quot;Deep copy a graph, including deep copy of all nodes, edges and </span>
  224. <span class="sd"> attributes of the graph, nodes and edges.</span>
  225. <span class="sd"> </span>
  226. <span class="sd"> Note</span>
  227. <span class="sd"> ----</span>
  228. <span class="sd"> It is the same as the NetworkX function graph.copy(), as far as I know.</span>
  229. <span class="sd"> &quot;&quot;&quot;</span>
  230. <span class="c1"># add graph attributes.</span>
  231. <span class="n">labels</span> <span class="o">=</span> <span class="p">{}</span>
  232. <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">graph</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
  233. <span class="n">labels</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">=</span> <span class="n">deepcopy</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
  234. <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">is_directed</span><span class="p">():</span>
  235. <span class="n">G_copy</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">DiGraph</span><span class="p">(</span><span class="o">**</span><span class="n">labels</span><span class="p">)</span>
  236. <span class="k">else</span><span class="p">:</span>
  237. <span class="n">G_copy</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">Graph</span><span class="p">(</span><span class="o">**</span><span class="n">labels</span><span class="p">)</span>
  238. <span class="c1"># add nodes </span>
  239. <span class="k">for</span> <span class="n">nd</span><span class="p">,</span> <span class="n">attrs</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">nodes</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
  240. <span class="n">labels</span> <span class="o">=</span> <span class="p">{}</span>
  241. <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">attrs</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
  242. <span class="n">labels</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">=</span> <span class="n">deepcopy</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
  243. <span class="n">G_copy</span><span class="o">.</span><span class="n">add_node</span><span class="p">(</span><span class="n">nd</span><span class="p">,</span> <span class="o">**</span><span class="n">labels</span><span class="p">)</span>
  244. <span class="c1"># add edges.</span>
  245. <span class="k">for</span> <span class="n">nd1</span><span class="p">,</span> <span class="n">nd2</span><span class="p">,</span> <span class="n">attrs</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
  246. <span class="n">labels</span> <span class="o">=</span> <span class="p">{}</span>
  247. <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">attrs</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
  248. <span class="n">labels</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">=</span> <span class="n">deepcopy</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
  249. <span class="n">G_copy</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="n">nd1</span><span class="p">,</span> <span class="n">nd2</span><span class="p">,</span> <span class="o">**</span><span class="n">labels</span><span class="p">)</span>
  250. <span class="k">return</span> <span class="n">G_copy</span></div>
  251. <div class="viewcode-block" id="graph_isIdentical"><a class="viewcode-back" href="../../../pygraph.utils.html#pygraph.utils.utils.graph_isIdentical">[docs]</a><span class="k">def</span> <span class="nf">graph_isIdentical</span><span class="p">(</span><span class="n">G1</span><span class="p">,</span> <span class="n">G2</span><span class="p">):</span>
  252. <span class="sd">&quot;&quot;&quot;Check if two graphs are identical, including: same nodes, edges, node</span>
  253. <span class="sd"> labels/attributes, edge labels/attributes.</span>
  254. <span class="sd"> </span>
  255. <span class="sd"> Notes</span>
  256. <span class="sd"> ----</span>
  257. <span class="sd"> 1. The type of graphs has to be the same.</span>
  258. <span class="sd"> 2. Global/Graph attributes are neglected as they may contain names for graphs.</span>
  259. <span class="sd"> &quot;&quot;&quot;</span>
  260. <span class="c1"># check nodes.</span>
  261. <span class="n">nlist1</span> <span class="o">=</span> <span class="p">[</span><span class="n">n</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">G1</span><span class="o">.</span><span class="n">nodes</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">)]</span>
  262. <span class="n">nlist2</span> <span class="o">=</span> <span class="p">[</span><span class="n">n</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">G2</span><span class="o">.</span><span class="n">nodes</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">)]</span>
  263. <span class="k">if</span> <span class="ow">not</span> <span class="n">nlist1</span> <span class="o">==</span> <span class="n">nlist2</span><span class="p">:</span>
  264. <span class="k">return</span> <span class="kc">False</span>
  265. <span class="c1"># check edges.</span>
  266. <span class="n">elist1</span> <span class="o">=</span> <span class="p">[</span><span class="n">n</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">G1</span><span class="o">.</span><span class="n">edges</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">)]</span>
  267. <span class="n">elist2</span> <span class="o">=</span> <span class="p">[</span><span class="n">n</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">G2</span><span class="o">.</span><span class="n">edges</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">)]</span>
  268. <span class="k">if</span> <span class="ow">not</span> <span class="n">elist1</span> <span class="o">==</span> <span class="n">elist2</span><span class="p">:</span>
  269. <span class="k">return</span> <span class="kc">False</span>
  270. <span class="c1"># check graph attributes.</span>
  271. <span class="k">return</span> <span class="kc">True</span></div>
  272. <div class="viewcode-block" id="get_node_labels"><a class="viewcode-back" href="../../../pygraph.utils.html#pygraph.utils.utils.get_node_labels">[docs]</a><span class="k">def</span> <span class="nf">get_node_labels</span><span class="p">(</span><span class="n">Gn</span><span class="p">,</span> <span class="n">node_label</span><span class="p">):</span>
  273. <span class="sd">&quot;&quot;&quot;Get node labels of dataset Gn.</span>
  274. <span class="sd"> &quot;&quot;&quot;</span>
  275. <span class="n">nl</span> <span class="o">=</span> <span class="nb">set</span><span class="p">()</span>
  276. <span class="k">for</span> <span class="n">G</span> <span class="ow">in</span> <span class="n">Gn</span><span class="p">:</span>
  277. <span class="n">nl</span> <span class="o">=</span> <span class="n">nl</span> <span class="o">|</span> <span class="nb">set</span><span class="p">(</span><span class="n">nx</span><span class="o">.</span><span class="n">get_node_attributes</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">node_label</span><span class="p">)</span><span class="o">.</span><span class="n">values</span><span class="p">())</span>
  278. <span class="k">return</span> <span class="n">nl</span></div>
  279. <div class="viewcode-block" id="get_edge_labels"><a class="viewcode-back" href="../../../pygraph.utils.html#pygraph.utils.utils.get_edge_labels">[docs]</a><span class="k">def</span> <span class="nf">get_edge_labels</span><span class="p">(</span><span class="n">Gn</span><span class="p">,</span> <span class="n">edge_label</span><span class="p">):</span>
  280. <span class="sd">&quot;&quot;&quot;Get edge labels of dataset Gn.</span>
  281. <span class="sd"> &quot;&quot;&quot;</span>
  282. <span class="n">el</span> <span class="o">=</span> <span class="nb">set</span><span class="p">()</span>
  283. <span class="k">for</span> <span class="n">G</span> <span class="ow">in</span> <span class="n">Gn</span><span class="p">:</span>
  284. <span class="n">el</span> <span class="o">=</span> <span class="n">el</span> <span class="o">|</span> <span class="nb">set</span><span class="p">(</span><span class="n">nx</span><span class="o">.</span><span class="n">get_edge_attributes</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">edge_label</span><span class="p">)</span><span class="o">.</span><span class="n">values</span><span class="p">())</span>
  285. <span class="k">return</span> <span class="n">el</span></div>
  286. </pre></div>
  287. </div>
  288. </div>
  289. <footer>
  290. <hr/>
  291. <div role="contentinfo">
  292. <p>
  293. &copy; Copyright 2020, Linlin Jia
  294. </p>
  295. </div>
  296. Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
  297. </footer>
  298. </div>
  299. </div>
  300. </section>
  301. </div>
  302. <script type="text/javascript">
  303. jQuery(function () {
  304. SphinxRtdTheme.Navigation.enable(true);
  305. });
  306. </script>
  307. </body>
  308. </html>

A Python package for graph kernels, graph edit distances and graph pre-image problem.