You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataset.py 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Thu Mar 26 18:48:27 2020
  5. @author: ljia
  6. """
  7. import numpy as np
  8. import networkx as nx
  9. from gklearn.utils.graph_files import load_dataset
  10. import os
  11. class Dataset(object):
  12. def __init__(self, filename=None, filename_targets=None, **kwargs):
  13. if filename is None:
  14. self.__graphs = None
  15. self.__targets = None
  16. self.__node_labels = None
  17. self.__edge_labels = None
  18. self.__node_attrs = None
  19. self.__edge_attrs = None
  20. else:
  21. self.load_dataset(filename, filename_targets=filename_targets, **kwargs)
  22. self.__substructures = None
  23. self.__node_label_dim = None
  24. self.__edge_label_dim = None
  25. self.__directed = None
  26. self.__dataset_size = None
  27. self.__total_node_num = None
  28. self.__ave_node_num = None
  29. self.__min_node_num = None
  30. self.__max_node_num = None
  31. self.__total_edge_num = None
  32. self.__ave_edge_num = None
  33. self.__min_edge_num = None
  34. self.__max_edge_num = None
  35. self.__ave_node_degree = None
  36. self.__min_node_degree = None
  37. self.__max_node_degree = None
  38. self.__ave_fill_factor = None
  39. self.__min_fill_factor = None
  40. self.__max_fill_factor = None
  41. self.__node_label_nums = None
  42. self.__edge_label_nums = None
  43. self.__node_attr_dim = None
  44. self.__edge_attr_dim = None
  45. self.__class_number = None
  46. def load_dataset(self, filename, filename_targets=None, **kwargs):
  47. self.__graphs, self.__targets, label_names = load_dataset(filename, filename_targets=filename_targets, **kwargs)
  48. self.__node_labels = label_names['node_labels']
  49. self.__node_attrs = label_names['node_attrs']
  50. self.__edge_labels = label_names['edge_labels']
  51. self.__edge_attrs = label_names['edge_attrs']
  52. def load_graphs(self, graphs, targets=None):
  53. # this has to be followed by set_labels().
  54. self.__graphs = graphs
  55. self.__targets = targets
  56. # self.set_labels_attrs()
  57. def load_predefined_dataset(self, ds_name):
  58. current_path = os.path.dirname(os.path.realpath(__file__)) + '/'
  59. if ds_name == 'Acyclic':
  60. pass
  61. elif ds_name == 'COIL-DEL':
  62. ds_file = current_path + '../../datasets/COIL-DEL/COIL-DEL_A.txt'
  63. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  64. elif ds_name == 'COIL-RAG':
  65. ds_file = current_path + '../../datasets/COIL-RAG/COIL-RAG_A.txt'
  66. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  67. elif ds_name == 'COLORS-3':
  68. ds_file = current_path + '../../datasets/COLORS-3/COLORS-3_A.txt'
  69. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  70. elif ds_name == 'Fingerprint':
  71. ds_file = current_path + '../../datasets/Fingerprint/Fingerprint_A.txt'
  72. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  73. elif ds_name == 'FRANKENSTEIN':
  74. ds_file = current_path + '../../datasets/FRANKENSTEIN/FRANKENSTEIN_A.txt'
  75. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  76. elif ds_name == 'Letter-high': # node non-symb
  77. ds_file = current_path + '../../datasets/Letter-high/Letter-high_A.txt'
  78. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  79. elif ds_name == 'Letter-low': # node non-symb
  80. ds_file = current_path + '../../datasets/Letter-high/Letter-low_A.txt'
  81. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  82. elif ds_name == 'Letter-med': # node non-symb
  83. ds_file = current_path + '../../datasets/Letter-high/Letter-med_A.txt'
  84. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  85. elif ds_name == 'Monoterpenoides':
  86. ds_file = current_path + '../../datasets/Monoterpenoides/dataset_10+.ds'
  87. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  88. elif ds_name == 'MUTAG':
  89. ds_file = current_path + '../../datasets/MUTAG/MUTAG_A.txt'
  90. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  91. elif ds_name == 'SYNTHETIC':
  92. pass
  93. elif ds_name == 'SYNTHETICnew':
  94. ds_file = current_path + '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt'
  95. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  96. elif ds_name == 'Synthie':
  97. pass
  98. self.__node_labels = label_names['node_labels']
  99. self.__node_attrs = label_names['node_attrs']
  100. self.__edge_labels = label_names['edge_labels']
  101. self.__edge_attrs = label_names['edge_attrs']
  102. def set_labels(self, node_labels=[], node_attrs=[], edge_labels=[], edge_attrs=[]):
  103. self.__node_labels = node_labels
  104. self.__node_attrs = node_attrs
  105. self.__edge_labels = edge_labels
  106. self.__edge_attrs = edge_attrs
  107. def set_labels_attrs(self, node_labels=None, node_attrs=None, edge_labels=None, edge_attrs=None):
  108. # @todo: remove labels which have only one possible values.
  109. if node_labels is None:
  110. self.__node_labels = self.__graphs[0].graph['node_labels']
  111. # # graphs are considered node unlabeled if all nodes have the same label.
  112. # infos.update({'node_labeled': is_nl if node_label_num > 1 else False})
  113. if node_attrs is None:
  114. self.__node_attrs = self.__graphs[0].graph['node_attrs']
  115. # for G in Gn:
  116. # for n in G.nodes(data=True):
  117. # if 'attributes' in n[1]:
  118. # return len(n[1]['attributes'])
  119. # return 0
  120. if edge_labels is None:
  121. self.__edge_labels = self.__graphs[0].graph['edge_labels']
  122. # # graphs are considered edge unlabeled if all edges have the same label.
  123. # infos.update({'edge_labeled': is_el if edge_label_num > 1 else False})
  124. if edge_attrs is None:
  125. self.__edge_attrs = self.__graphs[0].graph['edge_attrs']
  126. # for G in Gn:
  127. # if nx.number_of_edges(G) > 0:
  128. # for e in G.edges(data=True):
  129. # if 'attributes' in e[2]:
  130. # return len(e[2]['attributes'])
  131. # return 0
  132. def get_dataset_infos(self, keys=None):
  133. """Computes and returns the structure and property information of the graph dataset.
  134. Parameters
  135. ----------
  136. keys : list
  137. List of strings which indicate which informations will be returned. The
  138. possible choices includes:
  139. 'substructures': sub-structures graphs contains, including 'linear', 'non
  140. linear' and 'cyclic'.
  141. 'node_label_dim': whether vertices have symbolic labels.
  142. 'edge_label_dim': whether egdes have symbolic labels.
  143. 'directed': whether graphs in dataset are directed.
  144. 'dataset_size': number of graphs in dataset.
  145. 'total_node_num': total number of vertices of all graphs in dataset.
  146. 'ave_node_num': average number of vertices of graphs in dataset.
  147. 'min_node_num': minimum number of vertices of graphs in dataset.
  148. 'max_node_num': maximum number of vertices of graphs in dataset.
  149. 'total_edge_num': total number of edges of all graphs in dataset.
  150. 'ave_edge_num': average number of edges of graphs in dataset.
  151. 'min_edge_num': minimum number of edges of graphs in dataset.
  152. 'max_edge_num': maximum number of edges of graphs in dataset.
  153. 'ave_node_degree': average vertex degree of graphs in dataset.
  154. 'min_node_degree': minimum vertex degree of graphs in dataset.
  155. 'max_node_degree': maximum vertex degree of graphs in dataset.
  156. 'ave_fill_factor': average fill factor (number_of_edges /
  157. (number_of_nodes ** 2)) of graphs in dataset.
  158. 'min_fill_factor': minimum fill factor of graphs in dataset.
  159. 'max_fill_factor': maximum fill factor of graphs in dataset.
  160. 'node_label_nums': list of numbers of symbolic vertex labels of graphs in dataset.
  161. 'edge_label_nums': list number of symbolic edge labels of graphs in dataset.
  162. 'node_attr_dim': number of dimensions of non-symbolic vertex labels.
  163. Extracted from the 'attributes' attribute of graph nodes.
  164. 'edge_attr_dim': number of dimensions of non-symbolic edge labels.
  165. Extracted from the 'attributes' attribute of graph edges.
  166. 'class_number': number of classes. Only available for classification problems.
  167. All informations above will be returned if `keys` is not given.
  168. Return
  169. ------
  170. dict
  171. Information of the graph dataset keyed by `keys`.
  172. """
  173. infos = {}
  174. if keys == None:
  175. keys = [
  176. 'substructures',
  177. 'node_label_dim',
  178. 'edge_label_dim',
  179. 'directed',
  180. 'dataset_size',
  181. 'total_node_num',
  182. 'ave_node_num',
  183. 'min_node_num',
  184. 'max_node_num',
  185. 'total_edge_num',
  186. 'ave_edge_num',
  187. 'min_edge_num',
  188. 'max_edge_num',
  189. 'ave_node_degree',
  190. 'min_node_degree',
  191. 'max_node_degree',
  192. 'ave_fill_factor',
  193. 'min_fill_factor',
  194. 'max_fill_factor',
  195. 'node_label_nums',
  196. 'edge_label_nums',
  197. 'node_attr_dim',
  198. 'edge_attr_dim',
  199. 'class_number',
  200. ]
  201. # dataset size
  202. if 'dataset_size' in keys:
  203. if self.__dataset_size is None:
  204. self.__dataset_size = self.__get_dataset_size()
  205. infos['dataset_size'] = self.__dataset_size
  206. # graph node number
  207. if any(i in keys for i in ['total_node_num', 'ave_node_num', 'min_node_num', 'max_node_num']):
  208. all_node_nums = self.__get_all_node_nums()
  209. if 'total_node_num' in keys:
  210. if self.__total_node_num is None:
  211. self.__total_node_num = self.__get_total_node_num(all_node_nums)
  212. infos['total_node_num'] = self.__total_node_num
  213. if 'ave_node_num' in keys:
  214. if self.__ave_node_num is None:
  215. self.__ave_node_num = self.__get_ave_node_num(all_node_nums)
  216. infos['ave_node_num'] = self.__ave_node_num
  217. if 'min_node_num' in keys:
  218. if self.__min_node_num is None:
  219. self.__min_node_num = self.__get_min_node_num(all_node_nums)
  220. infos['min_node_num'] = self.__min_node_num
  221. if 'max_node_num' in keys:
  222. if self.__max_node_num is None:
  223. self.__max_node_num = self.__get_max_node_num(all_node_nums)
  224. infos['max_node_num'] = self.__max_node_num
  225. # graph edge number
  226. if any(i in keys for i in ['total_edge_num', 'ave_edge_num', 'min_edge_num', 'max_edge_num']):
  227. all_edge_nums = self.__get_all_edge_nums()
  228. if 'total_edge_num' in keys:
  229. if self.__total_edge_num is None:
  230. self.__total_edge_num = self.__get_total_edge_num(all_edge_nums)
  231. infos['total_edge_num'] = self.__total_edge_num
  232. if 'ave_edge_num' in keys:
  233. if self.__ave_edge_num is None:
  234. self.__ave_edge_num = self.__get_ave_edge_num(all_edge_nums)
  235. infos['ave_edge_num'] = self.__ave_edge_num
  236. if 'max_edge_num' in keys:
  237. if self.__max_edge_num is None:
  238. self.__max_edge_num = self.__get_max_edge_num(all_edge_nums)
  239. infos['max_edge_num'] = self.__max_edge_num
  240. if 'min_edge_num' in keys:
  241. if self.__min_edge_num is None:
  242. self.__min_edge_num = self.__get_min_edge_num(all_edge_nums)
  243. infos['min_edge_num'] = self.__min_edge_num
  244. # label number
  245. if 'node_label_dim' in keys:
  246. if self.__node_label_dim is None:
  247. self.__node_label_dim = self.__get_node_label_dim()
  248. infos['node_label_dim'] = self.__node_label_dim
  249. if 'node_label_nums' in keys:
  250. if self.__node_label_nums is None:
  251. self.__node_label_nums = {}
  252. for node_label in self.__node_labels:
  253. self.__node_label_nums[node_label] = self.get_node_label_num(node_label)
  254. infos['node_label_nums'] = self.__node_label_nums
  255. if 'edge_label_dim' in keys:
  256. if self.__edge_label_dim is None:
  257. self.__edge_label_dim = self.__get_edge_label_dim()
  258. infos['edge_label_dim'] = self.__edge_label_dim
  259. if 'edge_label_nums' in keys:
  260. if self.__edge_label_nums is None:
  261. self.__edge_label_nums = {}
  262. for edge_label in self.__edge_labels:
  263. self.__edge_label_nums[edge_label] = self.get_edge_label_num(edge_label)
  264. infos['edge_label_nums'] = self.__edge_label_nums
  265. if 'directed' in keys or 'substructures' in keys:
  266. if self.__directed is None:
  267. self.__directed = self.__is_directed()
  268. infos['directed'] = self.__directed
  269. # node degree
  270. if any(i in keys for i in ['ave_node_degree', 'max_node_degree', 'min_node_degree']):
  271. all_node_degrees = self.__get_all_node_degrees()
  272. if 'ave_node_degree' in keys:
  273. if self.__ave_node_degree is None:
  274. self.__ave_node_degree = self.__get_ave_node_degree(all_node_degrees)
  275. infos['ave_node_degree'] = self.__ave_node_degree
  276. if 'max_node_degree' in keys:
  277. if self.__max_node_degree is None:
  278. self.__max_node_degree = self.__get_max_node_degree(all_node_degrees)
  279. infos['max_node_degree'] = self.__max_node_degree
  280. if 'min_node_degree' in keys:
  281. if self.__min_node_degree is None:
  282. self.__min_node_degree = self.__get_min_node_degree(all_node_degrees)
  283. infos['min_node_degree'] = self.__min_node_degree
  284. # fill factor
  285. if any(i in keys for i in ['ave_fill_factor', 'max_fill_factor', 'min_fill_factor']):
  286. all_fill_factors = self.__get_all_fill_factors()
  287. if 'ave_fill_factor' in keys:
  288. if self.__ave_fill_factor is None:
  289. self.__ave_fill_factor = self.__get_ave_fill_factor(all_fill_factors)
  290. infos['ave_fill_factor'] = self.__ave_fill_factor
  291. if 'max_fill_factor' in keys:
  292. if self.__max_fill_factor is None:
  293. self.__max_fill_factor = self.__get_max_fill_factor(all_fill_factors)
  294. infos['max_fill_factor'] = self.__max_fill_factor
  295. if 'min_fill_factor' in keys:
  296. if self.__min_fill_factor is None:
  297. self.__min_fill_factor = self.__get_min_fill_factor(all_fill_factors)
  298. infos['min_fill_factor'] = self.__min_fill_factor
  299. if 'substructures' in keys:
  300. if self.__substructures is None:
  301. self.__substructures = self.__get_substructures()
  302. infos['substructures'] = self.__substructures
  303. if 'class_number' in keys:
  304. if self.__class_number is None:
  305. self.__class_number = self.__get_class_number()
  306. infos['class_number'] = self.__class_number
  307. if 'node_attr_dim' in keys:
  308. if self.__node_attr_dim is None:
  309. self.__node_attr_dim = self.__get_node_attr_dim()
  310. infos['node_attr_dim'] = self.__node_attr_dim
  311. if 'edge_attr_dim' in keys:
  312. if self.__edge_attr_dim is None:
  313. self.__edge_attr_dim = self.__get_edge_attr_dim()
  314. infos['edge_attr_dim'] = self.__edge_attr_dim
  315. return infos
  316. def print_graph_infos(self, infos):
  317. from collections import OrderedDict
  318. keys = list(infos.keys())
  319. print(OrderedDict(sorted(infos.items(), key=lambda i: keys.index(i[0]))))
  320. def remove_labels(self, node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]):
  321. for g in self.__graphs:
  322. for nd in g.nodes():
  323. for nl in node_labels:
  324. del g.nodes[nd][nl]
  325. for na in node_attrs:
  326. del g.nodes[nd][na]
  327. for ed in g.edges():
  328. for el in edge_labels:
  329. del g.edges[ed][el]
  330. for ea in edge_attrs:
  331. del g.edges[ed][ea]
  332. if len(node_labels) > 0:
  333. self.__node_labels = [nl for nl in self.__node_labels if nl not in node_labels]
  334. if len(edge_labels) > 0:
  335. self.__edge_labels = [el for el in self.__edge_labels if el not in edge_labels]
  336. if len(node_attrs) > 0:
  337. self.__node_attrs = [na for na in self.__node_attrs if na not in node_attrs]
  338. if len(edge_attrs) > 0:
  339. self.__edge_attrs = [ea for ea in self.__edge_attrs if ea not in edge_attrs]
  340. def cut_graphs(self, range_):
  341. self.__graphs = [self.__graphs[i] for i in range_]
  342. if self.__targets is not None:
  343. self.__targets = [self.__targets[i] for i in range_]
  344. # @todo
  345. # self.set_labels_attrs()
  346. def trim_dataset(self, edge_required=False):
  347. if edge_required:
  348. trimed_pairs = [(idx, g) for idx, g in enumerate(self.__graphs) if (nx.number_of_nodes(g) != 0 and nx.number_of_edges(g) != 0)]
  349. else:
  350. trimed_pairs = [(idx, g) for idx, g in enumerate(self.__graphs) if nx.number_of_nodes(g) != 0]
  351. idx = [p[0] for p in trimed_pairs]
  352. self.__graphs = [p[1] for p in trimed_pairs]
  353. self.__targets = [self.__targets[i] for i in idx]
  354. # @todo
  355. # self.set_labels_attrs()
  356. def __get_dataset_size(self):
  357. return len(self.__graphs)
  358. def __get_all_node_nums(self):
  359. return [nx.number_of_nodes(G) for G in self.__graphs]
  360. def __get_total_node_nums(self, all_node_nums):
  361. return np.sum(all_node_nums)
  362. def __get_ave_node_num(self, all_node_nums):
  363. return np.mean(all_node_nums)
  364. def __get_min_node_num(self, all_node_nums):
  365. return np.amin(all_node_nums)
  366. def __get_max_node_num(self, all_node_nums):
  367. return np.amax(all_node_nums)
  368. def __get_all_edge_nums(self):
  369. return [nx.number_of_edges(G) for G in self.__graphs]
  370. def __get_total_edge_nums(self, all_edge_nums):
  371. return np.sum(all_edge_nums)
  372. def __get_ave_edge_num(self, all_edge_nums):
  373. return np.mean(all_edge_nums)
  374. def __get_min_edge_num(self, all_edge_nums):
  375. return np.amin(all_edge_nums)
  376. def __get_max_edge_num(self, all_edge_nums):
  377. return np.amax(all_edge_nums)
  378. def __get_node_label_dim(self):
  379. return len(self.__node_labels)
  380. def __get_node_label_num(self, node_label):
  381. nl = set()
  382. for G in self.__graphs:
  383. nl = nl | set(nx.get_node_attributes(G, node_label).values())
  384. return len(nl)
  385. def __get_edge_label_dim(self):
  386. return len(self.__edge_labels)
  387. def __get_edge_label_num(self, edge_label):
  388. el = set()
  389. for G in self.__graphs:
  390. el = el | set(nx.get_edge_attributes(G, edge_label).values())
  391. return len(el)
  392. def __is_directed(self):
  393. return nx.is_directed(self.__graphs[0])
  394. def __get_all_node_degrees(self):
  395. return [np.mean(list(dict(G.degree()).values())) for G in self.__graphs]
  396. def __get_ave_node_degree(self, all_node_degrees):
  397. return np.mean(all_node_degrees)
  398. def __get_max_node_degree(self, all_node_degrees):
  399. return np.amax(all_node_degrees)
  400. def __get_min_node_degree(self, all_node_degrees):
  401. return np.amin(all_node_degrees)
  402. def __get_all_fill_factors(self):
  403. """
  404. Get fill factor, the number of non-zero entries in the adjacency matrix.
  405. Returns
  406. -------
  407. list[float]
  408. List of fill factors for all graphs.
  409. """
  410. return [nx.number_of_edges(G) / (nx.number_of_nodes(G) ** 2) for G in self.__graphs]
  411. def __get_ave_fill_factor(self, all_fill_factors):
  412. return np.mean(all_fill_factors)
  413. def __get_max_fill_factor(self, all_fill_factors):
  414. return np.amax(all_fill_factors)
  415. def __get_min_fill_factor(self, all_fill_factors):
  416. return np.amin(all_fill_factors)
  417. def __get_substructures(self):
  418. subs = set()
  419. for G in self.__graphs:
  420. degrees = list(dict(G.degree()).values())
  421. if any(i == 2 for i in degrees):
  422. subs.add('linear')
  423. if np.amax(degrees) >= 3:
  424. subs.add('non linear')
  425. if 'linear' in subs and 'non linear' in subs:
  426. break
  427. if self.__directed:
  428. for G in self.__graphs:
  429. if len(list(nx.find_cycle(G))) > 0:
  430. subs.add('cyclic')
  431. break
  432. # else:
  433. # # @todo: this method does not work for big graph with large amount of edges like D&D, try a better way.
  434. # upper = np.amin([nx.number_of_edges(G) for G in Gn]) * 2 + 10
  435. # for G in Gn:
  436. # if (nx.number_of_edges(G) < upper):
  437. # cyc = list(nx.simple_cycles(G.to_directed()))
  438. # if any(len(i) > 2 for i in cyc):
  439. # subs.add('cyclic')
  440. # break
  441. # if 'cyclic' not in subs:
  442. # for G in Gn:
  443. # cyc = list(nx.simple_cycles(G.to_directed()))
  444. # if any(len(i) > 2 for i in cyc):
  445. # subs.add('cyclic')
  446. # break
  447. return subs
  448. def __get_class_num(self):
  449. return len(set(self.__targets))
  450. def __get_node_attr_dim(self):
  451. return len(self.__node_attrs)
  452. def __get_edge_attr_dim(self):
  453. return len(self.__edge_attrs)
  454. @property
  455. def graphs(self):
  456. return self.__graphs
  457. @property
  458. def targets(self):
  459. return self.__targets
  460. @property
  461. def node_labels(self):
  462. return self.__node_labels
  463. @property
  464. def edge_labels(self):
  465. return self.__edge_labels
  466. @property
  467. def node_attrs(self):
  468. return self.__node_attrs
  469. @property
  470. def edge_attrs(self):
  471. return self.__edge_attrs
  472. def split_dataset_by_target(dataset):
  473. from gklearn.preimage.utils import get_same_item_indices
  474. graphs = dataset.graphs
  475. targets = dataset.targets
  476. datasets = []
  477. idx_targets = get_same_item_indices(targets)
  478. for key, val in idx_targets.items():
  479. sub_graphs = [graphs[i] for i in val]
  480. sub_dataset = Dataset()
  481. sub_dataset.load_graphs(sub_graphs, [key] * len(val))
  482. sub_dataset.set_labels(node_labels=dataset.node_labels, node_attrs=dataset.node_attrs, edge_labels=dataset.edge_labels, edge_attrs=dataset.edge_attrs)
  483. datasets.append(sub_dataset)
  484. return datasets

A Python package for graph kernels, graph edit distances and graph pre-image problem.