You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

shortest_path.py 8.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Tue Apr 7 15:24:58 2020
  5. @author: ljia
  6. """
  7. import sys
  8. from itertools import product
  9. # from functools import partial
  10. from multiprocessing import Pool
  11. from tqdm import tqdm
  12. import numpy as np
  13. from gklearn.utils.parallel import parallel_gm, parallel_me
  14. from gklearn.utils.utils import getSPGraph
  15. from gklearn.kernels import GraphKernel
  16. class ShortestPath(GraphKernel):
  17. def __init__(self, **kwargs):
  18. GraphKernel.__init__(self)
  19. self.__node_labels = kwargs.get('node_labels', [])
  20. self.__node_attrs = kwargs.get('node_attrs', [])
  21. self.__edge_weight = kwargs.get('edge_weight', None)
  22. self.__node_kernels = kwargs.get('node_kernels', None)
  23. self.__ds_infos = kwargs.get('ds_infos', {})
  24. def _compute_gm_series(self):
  25. # get shortest path graph of each graph.
  26. if self._verbose >= 2:
  27. iterator = tqdm(self._graphs, desc='getting sp graphs', file=sys.stdout)
  28. else:
  29. iterator = self._graphs
  30. self._graphs = [getSPGraph(g, edge_weight=self.__edge_weight) for g in iterator]
  31. # compute Gram matrix.
  32. gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
  33. from itertools import combinations_with_replacement
  34. itr = combinations_with_replacement(range(0, len(self._graphs)), 2)
  35. if self._verbose >= 2:
  36. iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout)
  37. else:
  38. iterator = itr
  39. for i, j in iterator:
  40. kernel = self.__sp_do_(self._graphs[i], self._graphs[j])
  41. gram_matrix[i][j] = kernel
  42. gram_matrix[j][i] = kernel
  43. return gram_matrix
  44. def _compute_gm_imap_unordered(self):
  45. # get shortest path graph of each graph.
  46. pool = Pool(self._n_jobs)
  47. get_sp_graphs_fun = self._wrapper_get_sp_graphs
  48. itr = zip(self._graphs, range(0, len(self._graphs)))
  49. if len(self._graphs) < 100 * self._n_jobs:
  50. chunksize = int(len(self._graphs) / self._n_jobs) + 1
  51. else:
  52. chunksize = 100
  53. if self._verbose >= 2:
  54. iterator = tqdm(pool.imap_unordered(get_sp_graphs_fun, itr, chunksize),
  55. desc='getting sp graphs', file=sys.stdout)
  56. else:
  57. iterator = pool.imap_unordered(get_sp_graphs_fun, itr, chunksize)
  58. for i, g in iterator:
  59. self._graphs[i] = g
  60. pool.close()
  61. pool.join()
  62. # compute Gram matrix.
  63. gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
  64. def init_worker(gs_toshare):
  65. global G_gs
  66. G_gs = gs_toshare
  67. do_fun = self._wrapper_sp_do
  68. parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker,
  69. glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose)
  70. return gram_matrix
  71. def _compute_kernel_list_series(self, g1, g_list):
  72. # get shortest path graphs of g1 and each graph in g_list.
  73. g1 = getSPGraph(g1, edge_weight=self.__edge_weight)
  74. if self._verbose >= 2:
  75. iterator = tqdm(g_list, desc='getting sp graphs', file=sys.stdout)
  76. else:
  77. iterator = g_list
  78. g_list = [getSPGraph(g, edge_weight=self.__edge_weight) for g in iterator]
  79. # compute kernel list.
  80. kernel_list = [None] * len(g_list)
  81. if self._verbose >= 2:
  82. iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout)
  83. else:
  84. iterator = range(len(g_list))
  85. for i in iterator:
  86. kernel = self.__sp_do(g1, g_list[i])
  87. kernel_list[i] = kernel
  88. return kernel_list
  89. def _compute_kernel_list_imap_unordered(self, g1, g_list):
  90. # get shortest path graphs of g1 and each graph in g_list.
  91. g1 = getSPGraph(g1, edge_weight=self.__edge_weight)
  92. pool = Pool(self._n_jobs)
  93. get_sp_graphs_fun = self._wrapper_get_sp_graphs
  94. itr = zip(g_list, range(0, len(g_list)))
  95. if len(g_list) < 100 * self._n_jobs:
  96. chunksize = int(len(g_list) / self._n_jobs) + 1
  97. else:
  98. chunksize = 100
  99. if self._verbose >= 2:
  100. iterator = tqdm(pool.imap_unordered(get_sp_graphs_fun, itr, chunksize),
  101. desc='getting sp graphs', file=sys.stdout)
  102. else:
  103. iterator = pool.imap_unordered(get_sp_graphs_fun, itr, chunksize)
  104. for i, g in iterator:
  105. g_list[i] = g
  106. pool.close()
  107. pool.join()
  108. # compute Gram matrix.
  109. kernel_list = [None] * len(g_list)
  110. def init_worker(g1_toshare, gl_toshare):
  111. global G_g1, G_gl
  112. G_g1 = g1_toshare
  113. G_gl = gl_toshare
  114. do_fun = self._wrapper_kernel_list_do
  115. def func_assign(result, var_to_assign):
  116. var_to_assign[result[0]] = result[1]
  117. itr = range(len(g_list))
  118. len_itr = len(g_list)
  119. parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr,
  120. init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose)
  121. return kernel_list
  122. def _wrapper_kernel_list_do(self, itr):
  123. return itr, self.__sp_do(G_g1, G_gl[itr])
  124. def _compute_single_kernel_series(self, g1, g2):
  125. g1 = getSPGraph(g1, edge_weight=self.__edge_weight)
  126. g2 = getSPGraph(g2, edge_weight=self.__edge_weight)
  127. kernel = self.__sp_do(g1, g2)
  128. return kernel
  129. def _wrapper_get_sp_graphs(self, itr_item):
  130. g = itr_item[0]
  131. i = itr_item[1]
  132. return i, getSPGraph(g, edge_weight=self.__edge_weight)
  133. def __sp_do(self, g1, g2):
  134. kernel = 0
  135. # compute shortest path matrices first, method borrowed from FCSP.
  136. vk_dict = {} # shortest path matrices dict
  137. if len(self.__node_labels) > 0:
  138. # node symb and non-synb labeled
  139. if len(self.__node_attrs) > 0:
  140. kn = self.__node_kernels['mix']
  141. for n1, n2 in product(
  142. g1.nodes(data=True), g2.nodes(data=True)):
  143. n1_labels = [n1[1][nl] for nl in self.__node_labels]
  144. n2_labels = [n2[1][nl] for nl in self.__node_labels]
  145. n1_attrs = [n1[1][na] for na in self.__node_attrs]
  146. n2_attrs = [n2[1][na] for na in self.__node_attrs]
  147. vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels, n1_attrs, n2_attrs)
  148. # node symb labeled
  149. else:
  150. kn = self.__node_kernels['symb']
  151. for n1 in g1.nodes(data=True):
  152. for n2 in g2.nodes(data=True):
  153. n1_labels = [n1[1][nl] for nl in self.__node_labels]
  154. n2_labels = [n2[1][nl] for nl in self.__node_labels]
  155. vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels)
  156. else:
  157. # node non-synb labeled
  158. if len(self.__node_attrs) > 0:
  159. kn = self.__node_kernels['nsymb']
  160. for n1 in g1.nodes(data=True):
  161. for n2 in g2.nodes(data=True):
  162. n1_attrs = [n1[1][na] for na in self.__node_attrs]
  163. n2_attrs = [n2[1][na] for na in self.__node_attrs]
  164. vk_dict[(n1[0], n2[0])] = kn(n1_attrs, n2_attrs)
  165. # node unlabeled
  166. else:
  167. for e1, e2 in product(
  168. g1.edges(data=True), g2.edges(data=True)):
  169. if e1[2]['cost'] == e2[2]['cost']:
  170. kernel += 1
  171. return kernel
  172. # compute graph kernels
  173. if self.__ds_infos['directed']:
  174. for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
  175. if e1[2]['cost'] == e2[2]['cost']:
  176. nk11, nk22 = vk_dict[(e1[0], e2[0])], vk_dict[(e1[1], e2[1])]
  177. kn1 = nk11 * nk22
  178. kernel += kn1
  179. else:
  180. for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
  181. if e1[2]['cost'] == e2[2]['cost']:
  182. # each edge walk is counted twice, starting from both its extreme nodes.
  183. nk11, nk12, nk21, nk22 = vk_dict[(e1[0], e2[0])], vk_dict[(
  184. e1[0], e2[1])], vk_dict[(e1[1], e2[0])], vk_dict[(e1[1], e2[1])]
  185. kn1 = nk11 * nk22
  186. kn2 = nk12 * nk21
  187. kernel += kn1 + kn2
  188. # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation
  189. # # compute vertex kernels
  190. # try:
  191. # vk_mat = np.zeros((nx.number_of_nodes(g1),
  192. # nx.number_of_nodes(g2)))
  193. # g1nl = enumerate(g1.nodes(data=True))
  194. # g2nl = enumerate(g2.nodes(data=True))
  195. # for i1, n1 in g1nl:
  196. # for i2, n2 in g2nl:
  197. # vk_mat[i1][i2] = kn(
  198. # n1[1][node_label], n2[1][node_label],
  199. # [n1[1]['attributes']], [n2[1]['attributes']])
  200. # range1 = range(0, len(edge_w_g[i]))
  201. # range2 = range(0, len(edge_w_g[j]))
  202. # for i1 in range1:
  203. # x1 = edge_x_g[i][i1]
  204. # y1 = edge_y_g[i][i1]
  205. # w1 = edge_w_g[i][i1]
  206. # for i2 in range2:
  207. # x2 = edge_x_g[j][i2]
  208. # y2 = edge_y_g[j][i2]
  209. # w2 = edge_w_g[j][i2]
  210. # ke = (w1 == w2)
  211. # if ke > 0:
  212. # kn1 = vk_mat[x1][x2] * vk_mat[y1][y2]
  213. # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2]
  214. # kernel += kn1 + kn2
  215. return kernel
  216. def _wrapper_sp_do(self, itr):
  217. i = itr[0]
  218. j = itr[1]
  219. return i, j, self.__sp_do(G_gs[i], G_gs[j])

A Python package for graph kernels, graph edit distances and graph pre-image problem.