You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

random_preimage_generator.py 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Fri May 29 14:29:52 2020
  5. @author: ljia
  6. """
  7. import numpy as np
  8. import time
  9. import random
  10. import sys
  11. import tqdm
  12. import multiprocessing
  13. import networkx as nx
  14. from gklearn.preimage import PreimageGenerator
  15. from gklearn.preimage.utils import compute_k_dis
  16. from gklearn.utils import Timer
  17. from gklearn.utils.utils import get_graph_kernel_by_name
  18. # from gklearn.utils.dataset import Dataset
  19. class RandomPreimageGenerator(PreimageGenerator):
  20. def __init__(self, dataset=None):
  21. PreimageGenerator.__init__(self, dataset=dataset)
  22. # arguments to set.
  23. self.__k = 5 # number of nearest neighbors of phi in D_N.
  24. self.__r_max = 10 # maximum number of iterations.
  25. self.__l = 500 # numbers of graphs generated for each graph in D_k U {g_i_hat}.
  26. self.__alphas = None # weights of linear combinations of points in kernel space.
  27. self.__parallel = True
  28. self.__n_jobs = multiprocessing.cpu_count()
  29. self.__time_limit_in_sec = 0 # @todo
  30. self.__max_itrs = 100 # @todo
  31. # values to compute.
  32. self.__runtime_generate_preimage = None
  33. self.__runtime_total = None
  34. self.__preimage = None
  35. self.__best_from_dataset = None
  36. self.__k_dis_preimage = None
  37. self.__k_dis_dataset = None
  38. self.__itrs = 0
  39. self.__converged = False # @todo
  40. self.__num_updates = 0
  41. # values that can be set or to be computed.
  42. self.__gram_matrix_unnorm = None
  43. self.__runtime_precompute_gm = None
  44. def set_options(self, **kwargs):
  45. self._kernel_options = kwargs.get('kernel_options', {})
  46. self._graph_kernel = kwargs.get('graph_kernel', None)
  47. self._verbose = kwargs.get('verbose', 2)
  48. self.__k = kwargs.get('k', 5)
  49. self.__r_max = kwargs.get('r_max', 10)
  50. self.__l = kwargs.get('l', 500)
  51. self.__alphas = kwargs.get('alphas', None)
  52. self.__parallel = kwargs.get('parallel', True)
  53. self.__n_jobs = kwargs.get('n_jobs', multiprocessing.cpu_count())
  54. self.__time_limit_in_sec = kwargs.get('time_limit_in_sec', 0)
  55. self.__max_itrs = kwargs.get('max_itrs', 100)
  56. self.__gram_matrix_unnorm = kwargs.get('gram_matrix_unnorm', None)
  57. self.__runtime_precompute_gm = kwargs.get('runtime_precompute_gm', None)
  58. def run(self):
  59. self._graph_kernel = get_graph_kernel_by_name(self._kernel_options['name'],
  60. node_labels=self._dataset.node_labels,
  61. edge_labels=self._dataset.edge_labels,
  62. node_attrs=self._dataset.node_attrs,
  63. edge_attrs=self._dataset.edge_attrs,
  64. ds_infos=self._dataset.get_dataset_infos(keys=['directed']),
  65. kernel_options=self._kernel_options)
  66. # record start time.
  67. start = time.time()
  68. # 1. precompute gram matrix.
  69. if self.__gram_matrix_unnorm is None:
  70. gram_matrix, run_time = self._graph_kernel.compute(self._dataset.graphs, **self._kernel_options)
  71. self.__gram_matrix_unnorm = self._graph_kernel.gram_matrix_unnorm
  72. end_precompute_gm = time.time()
  73. self.__runtime_precompute_gm = end_precompute_gm - start
  74. else:
  75. if self.__runtime_precompute_gm is None:
  76. raise Exception('Parameter "runtime_precompute_gm" must be given when using pre-computed Gram matrix.')
  77. self._graph_kernel.gram_matrix_unnorm = self.__gram_matrix_unnorm
  78. if self._kernel_options['normalize']:
  79. self._graph_kernel.gram_matrix = self._graph_kernel.normalize_gm(np.copy(self.__gram_matrix_unnorm))
  80. else:
  81. self._graph_kernel.gram_matrix = np.copy(self.__gram_matrix_unnorm)
  82. end_precompute_gm = time.time()
  83. start -= self.__runtime_precompute_gm
  84. # 2. compute k nearest neighbors of phi in D_N.
  85. if self._verbose >= 2:
  86. print('\nstart computing k nearest neighbors of phi in D_N...\n')
  87. D_N = self._dataset.graphs
  88. if self.__alphas is None:
  89. self.__alphas = [1 / len(D_N)] * len(D_N)
  90. k_dis_list = [] # distance between g_star and each graph.
  91. term3 = 0
  92. for i1, a1 in enumerate(self.__alphas):
  93. for i2, a2 in enumerate(self.__alphas):
  94. term3 += a1 * a2 * self._graph_kernel.gram_matrix[i1, i2]
  95. for idx in range(len(D_N)):
  96. k_dis_list.append(compute_k_dis(idx, range(0, len(D_N)), self.__alphas, self._graph_kernel.gram_matrix, term3=term3, withterm3=True))
  97. # sort.
  98. sort_idx = np.argsort(k_dis_list)
  99. dis_gs = [k_dis_list[idis] for idis in sort_idx[0:self.__k]] # the k shortest distances.
  100. nb_best = len(np.argwhere(dis_gs == dis_gs[0]).flatten().tolist())
  101. g0hat_list = [D_N[idx].copy() for idx in sort_idx[0:nb_best]] # the nearest neighbors of phi in D_N
  102. self.__best_from_dataset = g0hat_list[0] # get the first best graph if there are muitlple.
  103. self.__k_dis_dataset = dis_gs[0]
  104. if self.__k_dis_dataset == 0: # get the exact pre-image.
  105. end_generate_preimage = time.time()
  106. self.__runtime_generate_preimage = end_generate_preimage - end_precompute_gm
  107. self.__runtime_total = end_generate_preimage - start
  108. self.__preimage = self.__best_from_dataset.copy()
  109. self.__k_dis_preimage = self.__k_dis_dataset
  110. if self._verbose:
  111. print()
  112. print('=============================================================================')
  113. print('The exact pre-image is found from the input dataset.')
  114. print('-----------------------------------------------------------------------------')
  115. print('Distance in kernel space for the best graph from dataset and for preimage:', self.__k_dis_dataset)
  116. print('Time to pre-compute Gram matrix:', self.__runtime_precompute_gm)
  117. print('Time to generate pre-images:', self.__runtime_generate_preimage)
  118. print('Total time:', self.__runtime_total)
  119. print('=============================================================================')
  120. print()
  121. return
  122. dhat = dis_gs[0] # the nearest distance
  123. Gk = [D_N[ig].copy() for ig in sort_idx[0:self.__k]] # the k nearest neighbors
  124. Gs_nearest = [nx.convert_node_labels_to_integers(g) for g in Gk] # [g.copy() for g in Gk]
  125. # 3. start iterations.
  126. if self._verbose >= 2:
  127. print('starting iterations...')
  128. gihat_list = []
  129. dihat_list = []
  130. r = 0
  131. dis_of_each_itr = [dhat]
  132. while r < self.__r_max:
  133. print('\n- r =', r)
  134. found = False
  135. dis_bests = dis_gs + dihat_list
  136. # compute numbers of nodes to be inserted/deleted.
  137. # @todo what if the log is negetive? how to choose alpha (scalar)?
  138. fdgs_list = np.array(dis_bests)
  139. if np.min(fdgs_list) < 1:
  140. fdgs_list /= np.min(dis_bests)
  141. fdgs_list = [int(item) for item in np.ceil(np.log(fdgs_list))]
  142. if np.min(fdgs_list) < 1:
  143. fdgs_list = np.array(fdgs_list) + 1
  144. for ig, gs in enumerate(Gs_nearest + gihat_list):
  145. if self._verbose >= 2:
  146. print('-- computing', ig + 1, 'graphs out of', len(Gs_nearest) + len(gihat_list))
  147. for trail in range(0, self.__l):
  148. if self._verbose >= 2:
  149. print('---', trail + 1, 'trail out of', self.__l)
  150. # add and delete edges.
  151. gtemp = gs.copy()
  152. np.random.seed() # @todo: may not work for possible parallel.
  153. # which edges to change.
  154. # @todo: should we use just half of the adjacency matrix for undirected graphs?
  155. nb_vpairs = nx.number_of_nodes(gs) * (nx.number_of_nodes(gs) - 1)
  156. # @todo: what if fdgs is bigger than nb_vpairs?
  157. idx_change = random.sample(range(nb_vpairs), fdgs_list[ig] if
  158. fdgs_list[ig] < nb_vpairs else nb_vpairs)
  159. for item in idx_change:
  160. node1 = int(item / (nx.number_of_nodes(gs) - 1))
  161. node2 = (item - node1 * (nx.number_of_nodes(gs) - 1))
  162. if node2 >= node1: # skip the self pair.
  163. node2 += 1
  164. # @todo: is the randomness correct?
  165. if not gtemp.has_edge(node1, node2):
  166. gtemp.add_edge(node1, node2)
  167. else:
  168. gtemp.remove_edge(node1, node2)
  169. # compute new distances.
  170. kernels_to_gtmp, _ = self._graph_kernel.compute(gtemp, D_N, **self._kernel_options)
  171. kernel_gtmp, _ = self._graph_kernel.compute(gtemp, gtemp, **self._kernel_options)
  172. kernels_to_gtmp = [kernels_to_gtmp[i] / np.sqrt(self.__gram_matrix_unnorm[i, i] * kernel_gtmp) for i in range(len(kernels_to_gtmp))] # normalize
  173. # @todo: not correct kernel value
  174. gram_with_gtmp = np.concatenate((np.array([kernels_to_gtmp]), np.copy(self._graph_kernel.gram_matrix)), axis=0)
  175. gram_with_gtmp = np.concatenate((np.array([[1] + kernels_to_gtmp]).T, gram_with_gtmp), axis=1)
  176. dnew = compute_k_dis(0, range(1, 1 + len(D_N)), self.__alphas, gram_with_gtmp, term3=term3, withterm3=True)
  177. # get the better graph preimage.
  178. if dnew <= dhat: # @todo: the new distance is smaller or also equal?
  179. if dnew < dhat:
  180. if self._verbose >= 2:
  181. print('trail =', str(trail))
  182. print('\nI am smaller!')
  183. print('index (as in D_k U {gihat} =', str(ig))
  184. print('distance:', dhat, '->', dnew)
  185. self.__num_updates += 1
  186. elif dnew == dhat:
  187. if self._verbose >= 2:
  188. print('I am equal!')
  189. dhat = dnew
  190. gnew = gtemp.copy()
  191. found = True # found better graph.
  192. if found:
  193. r = 0
  194. gihat_list = [gnew]
  195. dihat_list = [dhat]
  196. else:
  197. r += 1
  198. dis_of_each_itr.append(dhat)
  199. self.__itrs += 1
  200. if self._verbose >= 2:
  201. print('Total number of iterations is', self.__itrs)
  202. print('The preimage is updated', self.__num_updates, 'times.')
  203. print('The shortest distances for previous iterations are', dis_of_each_itr)
  204. # get results and print.
  205. end_generate_preimage = time.time()
  206. self.__runtime_generate_preimage = end_generate_preimage - end_precompute_gm
  207. self.__runtime_total = end_generate_preimage - start
  208. self.__preimage = (g0hat_list[0] if len(gihat_list) == 0 else gihat_list[0])
  209. self.__k_dis_preimage = dhat
  210. if self._verbose:
  211. print()
  212. print('=============================================================================')
  213. print('Finished generalization of preimages.')
  214. print('-----------------------------------------------------------------------------')
  215. print('Distance in kernel space for the best graph from dataset:', self.__k_dis_dataset)
  216. print('Distance in kernel space for the preimage:', self.__k_dis_preimage)
  217. print('Total number of iterations for optimizing:', self.__itrs)
  218. print('Total number of updating preimage:', self.__num_updates)
  219. print('Time to pre-compute Gram matrix:', self.__runtime_precompute_gm)
  220. print('Time to generate pre-images:', self.__runtime_generate_preimage)
  221. print('Total time:', self.__runtime_total)
  222. print('=============================================================================')
  223. print()
  224. def get_results(self):
  225. results = {}
  226. results['runtime_precompute_gm'] = self.__runtime_precompute_gm
  227. results['runtime_generate_preimage'] = self.__runtime_generate_preimage
  228. results['runtime_total'] = self.__runtime_total
  229. results['k_dis_dataset'] = self.__k_dis_dataset
  230. results['k_dis_preimage'] = self.__k_dis_preimage
  231. results['itrs'] = self.__itrs
  232. results['num_updates'] = self.__num_updates
  233. return results
  234. def __termination_criterion_met(self, converged, timer, itr, itrs_without_update):
  235. if timer.expired() or (itr >= self.__max_itrs if self.__max_itrs >= 0 else False):
  236. # if self.__state == AlgorithmState.TERMINATED:
  237. # self.__state = AlgorithmState.INITIALIZED
  238. return True
  239. return converged or (itrs_without_update > self.__max_itrs_without_update if self.__max_itrs_without_update >= 0 else False)
  240. @property
  241. def preimage(self):
  242. return self.__preimage
  243. @property
  244. def best_from_dataset(self):
  245. return self.__best_from_dataset
  246. @property
  247. def gram_matrix_unnorm(self):
  248. return self.__gram_matrix_unnorm
  249. @gram_matrix_unnorm.setter
  250. def gram_matrix_unnorm(self, value):
  251. self.__gram_matrix_unnorm = value

A Python package for graph kernels, graph edit distances and graph pre-image problem.