You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

treeletKernel.py 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472
  1. """
  2. @author: linlin
  3. @references:
  4. [1] Gaüzère B, Brun L, Villemin D. Two new graphs kernels in
  5. chemoinformatics. Pattern Recognition Letters. 2012 Nov 1;33(15):2038-47.
  6. """
  7. import sys
  8. sys.path.insert(0, "../")
  9. import time
  10. from collections import Counter
  11. from itertools import chain
  12. from functools import partial
  13. from multiprocessing import Pool
  14. from tqdm import tqdm
  15. import networkx as nx
  16. import numpy as np
  17. from pygraph.utils.graphdataset import get_dataset_attributes
  18. from pygraph.utils.parallel import parallel_gm
  19. def treeletkernel(*args,
  20. sub_kernel,
  21. node_label='atom',
  22. edge_label='bond_type',
  23. parallel='imap_unordered',
  24. n_jobs=None,
  25. verbose=True):
  26. """Calculate treelet graph kernels between graphs.
  27. Parameters
  28. ----------
  29. Gn : List of NetworkX graph
  30. List of graphs between which the kernels are calculated.
  31. /
  32. G1, G2 : NetworkX graphs
  33. Two graphs between which the kernel is calculated.
  34. sub_kernel : function
  35. The sub-kernel between 2 real number vectors. Each vector counts the
  36. numbers of isomorphic treelets in a graph.
  37. node_label : string
  38. Node attribute used as label. The default node label is atom.
  39. edge_label : string
  40. Edge attribute used as label. The default edge label is bond_type.
  41. labeled : boolean
  42. Whether the graphs are labeled. The default is True.
  43. Return
  44. ------
  45. Kmatrix : Numpy matrix
  46. Kernel matrix, each element of which is the treelet kernel between 2 praphs.
  47. """
  48. # pre-process
  49. Gn = args[0] if len(args) == 1 else [args[0], args[1]]
  50. Gn = [g.copy() for g in Gn]
  51. Kmatrix = np.zeros((len(Gn), len(Gn)))
  52. ds_attrs = get_dataset_attributes(Gn,
  53. attr_names=['node_labeled', 'edge_labeled', 'is_directed'],
  54. node_label=node_label, edge_label=edge_label)
  55. labeled = False
  56. if ds_attrs['node_labeled'] or ds_attrs['edge_labeled']:
  57. labeled = True
  58. if not ds_attrs['node_labeled']:
  59. for G in Gn:
  60. nx.set_node_attributes(G, '0', 'atom')
  61. if not ds_attrs['edge_labeled']:
  62. for G in Gn:
  63. nx.set_edge_attributes(G, '0', 'bond_type')
  64. start_time = time.time()
  65. # ---- use pool.imap_unordered to parallel and track progress. ----
  66. if parallel == 'imap_unordered':
  67. # get all canonical keys of all graphs before calculating kernels to save
  68. # time, but this may cost a lot of memory for large dataset.
  69. pool = Pool(n_jobs)
  70. itr = zip(Gn, range(0, len(Gn)))
  71. if len(Gn) < 100 * n_jobs:
  72. chunksize = int(len(Gn) / n_jobs) + 1
  73. else:
  74. chunksize = 100
  75. canonkeys = [[] for _ in range(len(Gn))]
  76. get_partial = partial(wrapper_get_canonkeys, node_label, edge_label,
  77. labeled, ds_attrs['is_directed'])
  78. if verbose:
  79. iterator = tqdm(pool.imap_unordered(get_partial, itr, chunksize),
  80. desc='getting canonkeys', file=sys.stdout)
  81. else:
  82. iterator = pool.imap_unordered(get_partial, itr, chunksize)
  83. for i, ck in iterator:
  84. canonkeys[i] = ck
  85. pool.close()
  86. pool.join()
  87. # compute kernels.
  88. def init_worker(canonkeys_toshare):
  89. global G_canonkeys
  90. G_canonkeys = canonkeys_toshare
  91. do_partial = partial(wrapper_treeletkernel_do, sub_kernel)
  92. parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker,
  93. glbv=(canonkeys,), n_jobs=n_jobs, verbose=verbose)
  94. # ---- do not use parallelization. ----
  95. elif parallel == None:
  96. # get all canonical keys of all graphs before calculating kernels to save
  97. # time, but this may cost a lot of memory for large dataset.
  98. canonkeys = []
  99. for g in (tqdm(Gn, desc='getting canonkeys', file=sys.stdout) if verbose else Gn):
  100. canonkeys.append(get_canonkeys(g, node_label, edge_label, labeled,
  101. ds_attrs['is_directed']))
  102. # compute kernels.
  103. from itertools import combinations_with_replacement
  104. itr = combinations_with_replacement(range(0, len(Gn)), 2)
  105. for i, j in (tqdm(itr, desc='getting canonkeys', file=sys.stdout) if verbose else itr):
  106. Kmatrix[i][j] = _treeletkernel_do(canonkeys[i], canonkeys[j], sub_kernel)
  107. Kmatrix[j][i] = Kmatrix[i][j] # @todo: no directed graph considered?
  108. else:
  109. raise Exception('No proper parallelization method designated.')
  110. run_time = time.time() - start_time
  111. if verbose:
  112. print("\n --- treelet kernel matrix of size %d built in %s seconds ---"
  113. % (len(Gn), run_time))
  114. return Kmatrix, run_time
  115. def _treeletkernel_do(canonkey1, canonkey2, sub_kernel):
  116. """Calculate treelet graph kernel between 2 graphs.
  117. Parameters
  118. ----------
  119. canonkey1, canonkey2 : list
  120. List of canonical keys in 2 graphs, where each key is represented by a string.
  121. Return
  122. ------
  123. kernel : float
  124. Treelet Kernel between 2 graphs.
  125. """
  126. keys = set(canonkey1.keys()) & set(canonkey2.keys()) # find same canonical keys in both graphs
  127. vector1 = np.array([(canonkey1[key] if (key in canonkey1.keys()) else 0) for key in keys])
  128. vector2 = np.array([(canonkey2[key] if (key in canonkey2.keys()) else 0) for key in keys])
  129. kernel = sub_kernel(vector1, vector2)
  130. return kernel
  131. def wrapper_treeletkernel_do(sub_kernel, itr):
  132. i = itr[0]
  133. j = itr[1]
  134. return i, j, _treeletkernel_do(G_canonkeys[i], G_canonkeys[j], sub_kernel)
  135. def get_canonkeys(G, node_label, edge_label, labeled, is_directed):
  136. """Generate canonical keys of all treelets in a graph.
  137. Parameters
  138. ----------
  139. G : NetworkX graphs
  140. The graph in which keys are generated.
  141. node_label : string
  142. node attribute used as label. The default node label is atom.
  143. edge_label : string
  144. edge attribute used as label. The default edge label is bond_type.
  145. labeled : boolean
  146. Whether the graphs are labeled. The default is True.
  147. Return
  148. ------
  149. canonkey/canonkey_l : dict
  150. For unlabeled graphs, canonkey is a dictionary which records amount of
  151. every tree pattern. For labeled graphs, canonkey_l is one which keeps
  152. track of amount of every treelet.
  153. """
  154. patterns = {} # a dictionary which consists of lists of patterns for all graphlet.
  155. canonkey = {} # canonical key, a dictionary which records amount of every tree pattern.
  156. ### structural analysis ###
  157. ### In this section, a list of patterns is generated for each graphlet,
  158. ### where every pattern is represented by nodes ordered by Morgan's
  159. ### extended labeling.
  160. # linear patterns
  161. patterns['0'] = G.nodes()
  162. canonkey['0'] = nx.number_of_nodes(G)
  163. for i in range(1, 6): # for i in range(1, 6):
  164. patterns[str(i)] = find_all_paths(G, i, is_directed)
  165. canonkey[str(i)] = len(patterns[str(i)])
  166. # n-star patterns
  167. patterns['3star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 3]
  168. patterns['4star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 4]
  169. patterns['5star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 5]
  170. # n-star patterns
  171. canonkey['6'] = len(patterns['3star'])
  172. canonkey['8'] = len(patterns['4star'])
  173. canonkey['d'] = len(patterns['5star'])
  174. # pattern 7
  175. patterns['7'] = [] # the 1st line of Table 1 in Ref [1]
  176. for pattern in patterns['3star']:
  177. for i in range(1, len(pattern)): # for each neighbor of node 0
  178. if G.degree(pattern[i]) >= 2:
  179. pattern_t = pattern[:]
  180. # set the node with degree >= 2 as the 4th node
  181. pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i]
  182. for neighborx in G[pattern[i]]:
  183. if neighborx != pattern[0]:
  184. new_pattern = pattern_t + [neighborx]
  185. patterns['7'].append(new_pattern)
  186. canonkey['7'] = len(patterns['7'])
  187. # pattern 11
  188. patterns['11'] = [] # the 4th line of Table 1 in Ref [1]
  189. for pattern in patterns['4star']:
  190. for i in range(1, len(pattern)):
  191. if G.degree(pattern[i]) >= 2:
  192. pattern_t = pattern[:]
  193. pattern_t[i], pattern_t[4] = pattern_t[4], pattern_t[i]
  194. for neighborx in G[pattern[i]]:
  195. if neighborx != pattern[0]:
  196. new_pattern = pattern_t + [ neighborx ]
  197. patterns['11'].append(new_pattern)
  198. canonkey['b'] = len(patterns['11'])
  199. # pattern 12
  200. patterns['12'] = [] # the 5th line of Table 1 in Ref [1]
  201. rootlist = [] # a list of root nodes, whose extended labels are 3
  202. for pattern in patterns['3star']:
  203. if pattern[0] not in rootlist: # prevent to count the same pattern twice from each of the two root nodes
  204. rootlist.append(pattern[0])
  205. for i in range(1, len(pattern)):
  206. if G.degree(pattern[i]) >= 3:
  207. rootlist.append(pattern[i])
  208. pattern_t = pattern[:]
  209. pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i]
  210. for neighborx1 in G[pattern[i]]:
  211. if neighborx1 != pattern[0]:
  212. for neighborx2 in G[pattern[i]]:
  213. if neighborx1 > neighborx2 and neighborx2 != pattern[0]:
  214. new_pattern = pattern_t + [neighborx1] + [neighborx2]
  215. # new_patterns = [ pattern + [neighborx1] + [neighborx2] for neighborx1 in G[pattern[i]] if neighborx1 != pattern[0] for neighborx2 in G[pattern[i]] if (neighborx1 > neighborx2 and neighborx2 != pattern[0]) ]
  216. patterns['12'].append(new_pattern)
  217. canonkey['c'] = int(len(patterns['12']) / 2)
  218. # pattern 9
  219. patterns['9'] = [] # the 2nd line of Table 1 in Ref [1]
  220. for pattern in patterns['3star']:
  221. for pairs in [ [neighbor1, neighbor2] for neighbor1 in G[pattern[0]] if G.degree(neighbor1) >= 2 \
  222. for neighbor2 in G[pattern[0]] if G.degree(neighbor2) >= 2 if neighbor1 > neighbor2 ]:
  223. pattern_t = pattern[:]
  224. # move nodes with extended labels 4 to specific position to correspond to their children
  225. pattern_t[pattern_t.index(pairs[0])], pattern_t[2] = pattern_t[2], pattern_t[pattern_t.index(pairs[0])]
  226. pattern_t[pattern_t.index(pairs[1])], pattern_t[3] = pattern_t[3], pattern_t[pattern_t.index(pairs[1])]
  227. for neighborx1 in G[pairs[0]]:
  228. if neighborx1 != pattern[0]:
  229. for neighborx2 in G[pairs[1]]:
  230. if neighborx2 != pattern[0]:
  231. new_pattern = pattern_t + [neighborx1] + [neighborx2]
  232. patterns['9'].append(new_pattern)
  233. canonkey['9'] = len(patterns['9'])
  234. # pattern 10
  235. patterns['10'] = [] # the 3rd line of Table 1 in Ref [1]
  236. for pattern in patterns['3star']:
  237. for i in range(1, len(pattern)):
  238. if G.degree(pattern[i]) >= 2:
  239. for neighborx in G[pattern[i]]:
  240. if neighborx != pattern[0] and G.degree(neighborx) >= 2:
  241. pattern_t = pattern[:]
  242. pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i]
  243. new_patterns = [ pattern_t + [neighborx] + [neighborxx] for neighborxx in G[neighborx] if neighborxx != pattern[i] ]
  244. patterns['10'].extend(new_patterns)
  245. canonkey['a'] = len(patterns['10'])
  246. ### labeling information ###
  247. ### In this section, a list of canonical keys is generated for every
  248. ### pattern obtained in the structural analysis section above, which is a
  249. ### string corresponding to a unique treelet. A dictionary is built to keep
  250. ### track of the amount of every treelet.
  251. if labeled == True:
  252. canonkey_l = {} # canonical key, a dictionary which keeps track of amount of every treelet.
  253. # linear patterns
  254. canonkey_t = Counter(list(nx.get_node_attributes(G, node_label).values()))
  255. for key in canonkey_t:
  256. canonkey_l[('0', key)] = canonkey_t[key]
  257. for i in range(1, 6): # for i in range(1, 6):
  258. treelet = []
  259. for pattern in patterns[str(i)]:
  260. canonlist = list(chain.from_iterable((G.node[node][node_label], \
  261. G[node][pattern[idx+1]][edge_label]) for idx, node in enumerate(pattern[:-1])))
  262. canonlist.append(G.node[pattern[-1]][node_label])
  263. canonkey_t = canonlist if canonlist < canonlist[::-1] else canonlist[::-1]
  264. treelet.append(tuple([str(i)] + canonkey_t))
  265. canonkey_l.update(Counter(treelet))
  266. # n-star patterns
  267. for i in range(3, 6):
  268. treelet = []
  269. for pattern in patterns[str(i) + 'star']:
  270. canonlist = [tuple((G.node[leaf][node_label],
  271. G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:]]
  272. canonlist.sort()
  273. canonlist = list(chain.from_iterable(canonlist))
  274. canonkey_t = tuple(['d' if i == 5 else str(i * 2)] +
  275. [G.node[pattern[0]][node_label]] + canonlist)
  276. treelet.append(canonkey_t)
  277. canonkey_l.update(Counter(treelet))
  278. # pattern 7
  279. treelet = []
  280. for pattern in patterns['7']:
  281. canonlist = [tuple((G.node[leaf][node_label],
  282. G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:3]]
  283. canonlist.sort()
  284. canonlist = list(chain.from_iterable(canonlist))
  285. canonkey_t = tuple(['7'] + [G.node[pattern[0]][node_label]] + canonlist
  286. + [G.node[pattern[3]][node_label]]
  287. + [G[pattern[3]][pattern[0]][edge_label]]
  288. + [G.node[pattern[4]][node_label]]
  289. + [G[pattern[4]][pattern[3]][edge_label]])
  290. treelet.append(canonkey_t)
  291. canonkey_l.update(Counter(treelet))
  292. # pattern 11
  293. treelet = []
  294. for pattern in patterns['11']:
  295. canonlist = [tuple((G.node[leaf][node_label],
  296. G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:4]]
  297. canonlist.sort()
  298. canonlist = list(chain.from_iterable(canonlist))
  299. canonkey_t = tuple(['b'] + [G.node[pattern[0]][node_label]] + canonlist
  300. + [G.node[pattern[4]][node_label]]
  301. + [G[pattern[4]][pattern[0]][edge_label]]
  302. + [G.node[pattern[5]][node_label]]
  303. + [G[pattern[5]][pattern[4]][edge_label]])
  304. treelet.append(canonkey_t)
  305. canonkey_l.update(Counter(treelet))
  306. # pattern 10
  307. treelet = []
  308. for pattern in patterns['10']:
  309. canonkey4 = [G.node[pattern[5]][node_label], G[pattern[5]][pattern[4]][edge_label]]
  310. canonlist = [tuple((G.node[leaf][node_label],
  311. G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:3]]
  312. canonlist.sort()
  313. canonkey0 = list(chain.from_iterable(canonlist))
  314. canonkey_t = tuple(['a'] + [G.node[pattern[3]][node_label]]
  315. + [G.node[pattern[4]][node_label]]
  316. + [G[pattern[4]][pattern[3]][edge_label]]
  317. + [G.node[pattern[0]][node_label]]
  318. + [G[pattern[0]][pattern[3]][edge_label]]
  319. + canonkey4 + canonkey0)
  320. treelet.append(canonkey_t)
  321. canonkey_l.update(Counter(treelet))
  322. # pattern 12
  323. treelet = []
  324. for pattern in patterns['12']:
  325. canonlist0 = [tuple((G.node[leaf][node_label],
  326. G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:3]]
  327. canonlist0.sort()
  328. canonlist0 = list(chain.from_iterable(canonlist0))
  329. canonlist3 = [tuple((G.node[leaf][node_label],
  330. G[leaf][pattern[3]][edge_label])) for leaf in pattern[4:6]]
  331. canonlist3.sort()
  332. canonlist3 = list(chain.from_iterable(canonlist3))
  333. # 2 possible key can be generated from 2 nodes with extended label 3,
  334. # select the one with lower lexicographic order.
  335. canonkey_t1 = tuple(['c'] + [G.node[pattern[0]][node_label]] + canonlist0
  336. + [G.node[pattern[3]][node_label]]
  337. + [G[pattern[3]][pattern[0]][edge_label]]
  338. + canonlist3)
  339. canonkey_t2 = tuple(['c'] + [G.node[pattern[3]][node_label]] + canonlist3
  340. + [G.node[pattern[0]][node_label]]
  341. + [G[pattern[0]][pattern[3]][edge_label]]
  342. + canonlist0)
  343. treelet.append(canonkey_t1 if canonkey_t1 < canonkey_t2 else canonkey_t2)
  344. canonkey_l.update(Counter(treelet))
  345. # pattern 9
  346. treelet = []
  347. for pattern in patterns['9']:
  348. canonkey2 = [G.node[pattern[4]][node_label], G[pattern[4]][pattern[2]][edge_label]]
  349. canonkey3 = [G.node[pattern[5]][node_label], G[pattern[5]][pattern[3]][edge_label]]
  350. prekey2 = [G.node[pattern[2]][node_label], G[pattern[2]][pattern[0]][edge_label]]
  351. prekey3 = [G.node[pattern[3]][node_label], G[pattern[3]][pattern[0]][edge_label]]
  352. if prekey2 + canonkey2 < prekey3 + canonkey3:
  353. canonkey_t = [G.node[pattern[1]][node_label]] \
  354. + [G[pattern[1]][pattern[0]][edge_label]] \
  355. + prekey2 + prekey3 + canonkey2 + canonkey3
  356. else:
  357. canonkey_t = [G.node[pattern[1]][node_label]] \
  358. + [G[pattern[1]][pattern[0]][edge_label]] \
  359. + prekey3 + prekey2 + canonkey3 + canonkey2
  360. treelet.append(tuple(['9'] + [G.node[pattern[0]][node_label]] + canonkey_t))
  361. canonkey_l.update(Counter(treelet))
  362. return canonkey_l
  363. return canonkey
  364. def wrapper_get_canonkeys(node_label, edge_label, labeled, is_directed, itr_item):
  365. g = itr_item[0]
  366. i = itr_item[1]
  367. return i, get_canonkeys(g, node_label, edge_label, labeled, is_directed)
  368. def find_paths(G, source_node, length):
  369. """Find all paths with a certain length those start from a source node.
  370. A recursive depth first search is applied.
  371. Parameters
  372. ----------
  373. G : NetworkX graphs
  374. The graph in which paths are searched.
  375. source_node : integer
  376. The number of the node from where all paths start.
  377. length : integer
  378. The length of paths.
  379. Return
  380. ------
  381. path : list of list
  382. List of paths retrieved, where each path is represented by a list of nodes.
  383. """
  384. if length == 0:
  385. return [[source_node]]
  386. path = [[source_node] + path for neighbor in G[source_node] \
  387. for path in find_paths(G, neighbor, length - 1) if source_node not in path]
  388. return path
  389. def find_all_paths(G, length, is_directed):
  390. """Find all paths with a certain length in a graph. A recursive depth first
  391. search is applied.
  392. Parameters
  393. ----------
  394. G : NetworkX graphs
  395. The graph in which paths are searched.
  396. length : integer
  397. The length of paths.
  398. Return
  399. ------
  400. path : list of list
  401. List of paths retrieved, where each path is represented by a list of nodes.
  402. """
  403. all_paths = []
  404. for node in G:
  405. all_paths.extend(find_paths(G, node, length))
  406. if not is_directed:
  407. # For each path, two presentations are retrieved from its two extremities.
  408. # Remove one of them.
  409. all_paths_r = [path[::-1] for path in all_paths]
  410. for idx, path in enumerate(all_paths[:-1]):
  411. for path2 in all_paths_r[idx+1::]:
  412. if path == path2:
  413. all_paths[idx] = []
  414. break
  415. all_paths = list(filter(lambda a: a != [], all_paths))
  416. return all_paths

A Python package for graph kernels, graph edit distances and graph pre-image problem.