You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

file_managers.py 30 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839
  1. """ Utilities function to manage graph files
  2. """
  3. from os.path import dirname, splitext
  4. class DataLoader():
  5. def __init__(self, filename, filename_targets=None, gformat=None, **kwargs):
  6. """Read graph data from filename and load them as NetworkX graphs.
  7. Parameters
  8. ----------
  9. filename : string
  10. The name of the file from where the dataset is read.
  11. filename_targets : string
  12. The name of file of the targets corresponding to graphs.
  13. Notes
  14. -----
  15. This function supports following graph dataset formats:
  16. 'ds': load data from .ds file. See comments of function loadFromDS for a example.
  17. 'cxl': load data from Graph eXchange Language file (.cxl file). See
  18. `here <http://www.gupro.de/GXL/Introduction/background.html>`__ for detail.
  19. 'sdf': load data from structured data file (.sdf file). See
  20. `here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__
  21. for details.
  22. 'mat': Load graph data from a MATLAB (up to version 7.1) .mat file. See
  23. README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__
  24. for details.
  25. 'txt': Load graph data from the TUDataset. See
  26. `here <https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets>`__
  27. for details. Note here filename is the name of either .txt file in
  28. the dataset directory.
  29. """
  30. if isinstance(filename, str):
  31. extension = splitext(filename)[1][1:]
  32. else: # filename is a list of files.
  33. extension = splitext(filename[0])[1][1:]
  34. if extension == "ds":
  35. self._graphs, self._targets, self._label_names = self.load_from_ds(filename, filename_targets)
  36. elif extension == "cxl":
  37. dir_dataset = kwargs.get('dirname_dataset', None)
  38. self._graphs, self._targets, self._label_names = self.load_from_xml(filename, dir_dataset)
  39. elif extension == 'xml':
  40. dir_dataset = kwargs.get('dirname_dataset', None)
  41. self._graphs, self._targets, self._label_names = self.load_from_xml(filename, dir_dataset)
  42. elif extension == "mat":
  43. order = kwargs.get('order')
  44. self._graphs, self._targets, self._label_names = self.load_mat(filename, order)
  45. elif extension == 'txt':
  46. self._graphs, self._targets, self._label_names = self.load_tud(filename)
  47. else:
  48. raise ValueError('The input file with the extension ".', extension, '" is not supported. The supported extensions includes: ".ds", ".cxl", ".xml", ".mat", ".txt".')
  49. def load_from_ds(self, filename, filename_targets):
  50. """Load data from .ds file.
  51. Possible graph formats include:
  52. '.ct': see function load_ct for detail.
  53. '.gxl': see dunction load_gxl for detail.
  54. Note these graph formats are checked automatically by the extensions of
  55. graph files.
  56. """
  57. if isinstance(filename, str):
  58. dirname_dataset = dirname(filename)
  59. with open(filename) as f:
  60. content = f.read().splitlines()
  61. else: # filename is a list of files.
  62. dirname_dataset = dirname(filename[0])
  63. content = []
  64. for fn in filename:
  65. with open(fn) as f:
  66. content += f.read().splitlines()
  67. # to remove duplicate file names.
  68. data = []
  69. y = []
  70. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  71. content = [line for line in content if not line.endswith('.ds')] # Alkane
  72. content = [line for line in content if not line.startswith('#')] # Acyclic
  73. extension = splitext(content[0].split(' ')[0])[1][1:]
  74. if extension == 'ct':
  75. load_file_fun = self.load_ct
  76. elif extension == 'gxl' or extension == 'sdf': # @todo: .sdf not tested yet.
  77. load_file_fun = self.load_gxl
  78. if filename_targets is None or filename_targets == '':
  79. for i in range(0, len(content)):
  80. tmp = content[i].split(' ')
  81. # remove the '#'s in file names
  82. g, l_names = load_file_fun(dirname_dataset + '/' + tmp[0].replace('#', '', 1))
  83. data.append(g)
  84. self._append_label_names(label_names, l_names)
  85. y.append(float(tmp[1]))
  86. else: # targets in a seperate file
  87. for i in range(0, len(content)):
  88. tmp = content[i]
  89. # remove the '#'s in file names
  90. g, l_names = load_file_fun(dirname_dataset + '/' + tmp.replace('#', '', 1))
  91. data.append(g)
  92. self._append_label_names(label_names, l_names)
  93. with open(filename_targets) as fnt:
  94. content_y = fnt.read().splitlines()
  95. # assume entries in filename and filename_targets have the same order.
  96. for item in content_y:
  97. tmp = item.split(' ')
  98. # assume the 3rd entry in a line is y (for Alkane dataset)
  99. y.append(float(tmp[2]))
  100. return data, y, label_names
  101. def load_from_xml(self, filename, dir_dataset=None):
  102. import xml.etree.ElementTree as ET
  103. if dir_dataset is not None:
  104. dir_dataset = dir_dataset
  105. else:
  106. dir_dataset = dirname(filename)
  107. tree = ET.parse(filename)
  108. root = tree.getroot()
  109. data = []
  110. y = []
  111. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  112. for graph in root.iter('graph'):
  113. mol_filename = graph.attrib['file']
  114. mol_class = graph.attrib['class']
  115. g, l_names = self.load_gxl(dir_dataset + '/' + mol_filename)
  116. data.append(g)
  117. self._append_label_names(label_names, l_names)
  118. y.append(mol_class)
  119. return data, y, label_names
  120. def load_mat(self, filename, order): # @todo: need to be updated (auto order) or deprecated.
  121. """Load graph data from a MATLAB (up to version 7.1) .mat file.
  122. Notes
  123. ------
  124. A MAT file contains a struct array containing graphs, and a column vector lx containing a class label for each graph.
  125. Check README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__ for detailed structure.
  126. """
  127. from scipy.io import loadmat
  128. import numpy as np
  129. import networkx as nx
  130. data = []
  131. content = loadmat(filename)
  132. for key, value in content.items():
  133. if key[0] == 'l': # class label
  134. y = np.transpose(value)[0].tolist()
  135. elif key[0] != '_':
  136. # if adjacency matrix is not compressed / edge label exists
  137. if order[1] == 0:
  138. for i, item in enumerate(value[0]):
  139. g = nx.Graph(name=i) # set name of the graph
  140. nl = np.transpose(item[order[3]][0][0][0]) # node label
  141. for index, label in enumerate(nl[0]):
  142. g.add_node(index, label_1=str(label))
  143. el = item[order[4]][0][0][0] # edge label
  144. for edge in el:
  145. g.add_edge(edge[0] - 1, edge[1] - 1, label_1=str(edge[2]))
  146. data.append(g)
  147. else:
  148. for i, item in enumerate(value[0]):
  149. g = nx.Graph(name=i) # set name of the graph
  150. nl = np.transpose(item[order[3]][0][0][0]) # node label
  151. for index, label in enumerate(nl[0]):
  152. g.add_node(index, label_1=str(label))
  153. sam = item[order[0]] # sparse adjacency matrix
  154. index_no0 = sam.nonzero()
  155. for col, row in zip(index_no0[0], index_no0[1]):
  156. g.add_edge(col, row)
  157. data.append(g)
  158. label_names = {'node_labels': ['label_1'], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  159. if order[1] == 0:
  160. label_names['edge_labels'].append('label_1')
  161. return data, y, label_names
  162. def load_tud(self, filename):
  163. """Load graph data from TUD dataset files.
  164. Notes
  165. ------
  166. The graph data is loaded from separate files.
  167. Check README in `downloadable file <http://tiny.cc/PK_MLJ_data>`__, 2018 for detailed structure.
  168. """
  169. import networkx as nx
  170. from os import listdir
  171. from os.path import dirname, basename
  172. def get_infos_from_readme(frm): # @todo: add README (cuniform), maybe node/edge label maps.
  173. """Get information from DS_label_readme.txt file.
  174. """
  175. def get_label_names_from_line(line):
  176. """Get names of labels/attributes from a line.
  177. """
  178. str_names = line.split('[')[1].split(']')[0]
  179. names = str_names.split(',')
  180. names = [attr.strip() for attr in names]
  181. return names
  182. def get_class_label_map(label_map_strings):
  183. label_map = {}
  184. for string in label_map_strings:
  185. integer, label = string.split('\t')
  186. label_map[int(integer.strip())] = label.strip()
  187. return label_map
  188. label_names = {'node_labels': [], 'node_attrs': [],
  189. 'edge_labels': [], 'edge_attrs': []}
  190. class_label_map = None
  191. class_label_map_strings = []
  192. with open(frm) as rm:
  193. content_rm = rm.read().splitlines()
  194. i = 0
  195. while i < len(content_rm):
  196. line = content_rm[i].strip()
  197. # get node/edge labels and attributes.
  198. if line.startswith('Node labels:'):
  199. label_names['node_labels'] = get_label_names_from_line(line)
  200. elif line.startswith('Node attributes:'):
  201. label_names['node_attrs'] = get_label_names_from_line(line)
  202. elif line.startswith('Edge labels:'):
  203. label_names['edge_labels'] = get_label_names_from_line(line)
  204. elif line.startswith('Edge attributes:'):
  205. label_names['edge_attrs'] = get_label_names_from_line(line)
  206. # get class label map.
  207. elif line.startswith('Class labels were converted to integer values using this map:'):
  208. i += 2
  209. line = content_rm[i].strip()
  210. while line != '' and i < len(content_rm):
  211. class_label_map_strings.append(line)
  212. i += 1
  213. line = content_rm[i].strip()
  214. class_label_map = get_class_label_map(class_label_map_strings)
  215. i += 1
  216. return label_names, class_label_map
  217. # get dataset name.
  218. dirname_dataset = dirname(filename)
  219. filename = basename(filename)
  220. fn_split = filename.split('_A')
  221. ds_name = fn_split[0].strip()
  222. # load data file names
  223. for name in listdir(dirname_dataset):
  224. if ds_name + '_A' in name:
  225. fam = dirname_dataset + '/' + name
  226. elif ds_name + '_graph_indicator' in name:
  227. fgi = dirname_dataset + '/' + name
  228. elif ds_name + '_graph_labels' in name:
  229. fgl = dirname_dataset + '/' + name
  230. elif ds_name + '_node_labels' in name:
  231. fnl = dirname_dataset + '/' + name
  232. elif ds_name + '_edge_labels' in name:
  233. fel = dirname_dataset + '/' + name
  234. elif ds_name + '_edge_attributes' in name:
  235. fea = dirname_dataset + '/' + name
  236. elif ds_name + '_node_attributes' in name:
  237. fna = dirname_dataset + '/' + name
  238. elif ds_name + '_graph_attributes' in name:
  239. fga = dirname_dataset + '/' + name
  240. elif ds_name + '_label_readme' in name:
  241. frm = dirname_dataset + '/' + name
  242. # this is supposed to be the node attrs, make sure to put this as the last 'elif'
  243. elif ds_name + '_attributes' in name:
  244. fna = dirname_dataset + '/' + name
  245. # get labels and attributes names.
  246. if 'frm' in locals():
  247. label_names, class_label_map = get_infos_from_readme(frm)
  248. else:
  249. label_names = {'node_labels': [], 'node_attrs': [],
  250. 'edge_labels': [], 'edge_attrs': []}
  251. class_label_map = None
  252. with open(fgi) as gi:
  253. content_gi = gi.read().splitlines() # graph indicator
  254. with open(fam) as am:
  255. content_am = am.read().splitlines() # adjacency matrix
  256. # load targets.
  257. if 'fgl' in locals():
  258. with open(fgl) as gl:
  259. content_targets = gl.read().splitlines() # targets (classification)
  260. targets = [float(i) for i in content_targets]
  261. elif 'fga' in locals():
  262. with open(fga) as ga:
  263. content_targets = ga.read().splitlines() # targets (regression)
  264. targets = [int(i) for i in content_targets]
  265. else:
  266. raise Exception('Can not find targets file. Please make sure there is a "', ds_name, '_graph_labels.txt" or "', ds_name, '_graph_attributes.txt"', 'file in your dataset folder.')
  267. if class_label_map is not None:
  268. targets = [class_label_map[t] for t in targets]
  269. # create graphs and add nodes
  270. data = [nx.Graph(name=str(i)) for i in range(0, len(content_targets))]
  271. if 'fnl' in locals():
  272. with open(fnl) as nl:
  273. content_nl = nl.read().splitlines() # node labels
  274. for idx, line in enumerate(content_gi):
  275. # transfer to int first in case of unexpected blanks
  276. data[int(line) - 1].add_node(idx)
  277. labels = [l.strip() for l in content_nl[idx].split(',')]
  278. if label_names['node_labels'] == []: # @todo: need fix bug.
  279. for i, label in enumerate(labels):
  280. l_name = 'label_' + str(i)
  281. data[int(line) - 1].nodes[idx][l_name] = label
  282. label_names['node_labels'].append(l_name)
  283. else:
  284. for i, l_name in enumerate(label_names['node_labels']):
  285. data[int(line) - 1].nodes[idx][l_name] = labels[i]
  286. else:
  287. for i, line in enumerate(content_gi):
  288. data[int(line) - 1].add_node(i)
  289. # add edges
  290. for line in content_am:
  291. tmp = line.split(',')
  292. n1 = int(tmp[0]) - 1
  293. n2 = int(tmp[1]) - 1
  294. # ignore edge weight here.
  295. g = int(content_gi[n1]) - 1
  296. data[g].add_edge(n1, n2)
  297. # add edge labels
  298. if 'fel' in locals():
  299. with open(fel) as el:
  300. content_el = el.read().splitlines()
  301. for idx, line in enumerate(content_el):
  302. labels = [l.strip() for l in line.split(',')]
  303. n = [int(i) - 1 for i in content_am[idx].split(',')]
  304. g = int(content_gi[n[0]]) - 1
  305. if label_names['edge_labels'] == []:
  306. for i, label in enumerate(labels):
  307. l_name = 'label_' + str(i)
  308. data[g].edges[n[0], n[1]][l_name] = label
  309. label_names['edge_labels'].append(l_name)
  310. else:
  311. for i, l_name in enumerate(label_names['edge_labels']):
  312. data[g].edges[n[0], n[1]][l_name] = labels[i]
  313. # add node attributes
  314. if 'fna' in locals():
  315. with open(fna) as na:
  316. content_na = na.read().splitlines()
  317. for idx, line in enumerate(content_na):
  318. attrs = [a.strip() for a in line.split(',')]
  319. g = int(content_gi[idx]) - 1
  320. if label_names['node_attrs'] == []:
  321. for i, attr in enumerate(attrs):
  322. a_name = 'attr_' + str(i)
  323. data[g].nodes[idx][a_name] = attr
  324. label_names['node_attrs'].append(a_name)
  325. else:
  326. for i, a_name in enumerate(label_names['node_attrs']):
  327. data[g].nodes[idx][a_name] = attrs[i]
  328. # add edge attributes
  329. if 'fea' in locals():
  330. with open(fea) as ea:
  331. content_ea = ea.read().splitlines()
  332. for idx, line in enumerate(content_ea):
  333. attrs = [a.strip() for a in line.split(',')]
  334. n = [int(i) - 1 for i in content_am[idx].split(',')]
  335. g = int(content_gi[n[0]]) - 1
  336. if label_names['edge_attrs'] == []:
  337. for i, attr in enumerate(attrs):
  338. a_name = 'attr_' + str(i)
  339. data[g].edges[n[0], n[1]][a_name] = attr
  340. label_names['edge_attrs'].append(a_name)
  341. else:
  342. for i, a_name in enumerate(label_names['edge_attrs']):
  343. data[g].edges[n[0], n[1]][a_name] = attrs[i]
  344. return data, targets, label_names
  345. def load_ct(self, filename): # @todo: this function is only tested on CTFile V2000; header not considered; only simple cases (atoms and bonds are considered.)
  346. """load data from a Chemical Table (.ct) file.
  347. Notes
  348. ------
  349. a typical example of data in .ct is like this:
  350. 3 2 <- number of nodes and edges
  351. 0.0000 0.0000 0.0000 C <- each line describes a node (x,y,z + label)
  352. 0.0000 0.0000 0.0000 C
  353. 0.0000 0.0000 0.0000 O
  354. 1 3 1 1 <- each line describes an edge : to, from, bond type, bond stereo
  355. 2 3 1 1
  356. Check `CTFile Formats file <https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&ved=2ahUKEwivhaSdjsTlAhVhx4UKHczHA8gQFjAJegQIARAC&url=https%3A%2F%2Fwww.daylight.com%2Fmeetings%2Fmug05%2FKappler%2Fctfile.pdf&usg=AOvVaw1cDNrrmMClkFPqodlF2inS>`__
  357. for detailed format discription.
  358. """
  359. import networkx as nx
  360. from os.path import basename
  361. g = nx.Graph()
  362. with open(filename) as f:
  363. content = f.read().splitlines()
  364. g = nx.Graph(name=str(content[0]), filename=basename(filename)) # set name of the graph
  365. # read the counts line.
  366. tmp = content[1].split(' ')
  367. tmp = [x for x in tmp if x != '']
  368. nb_atoms = int(tmp[0].strip()) # number of atoms
  369. nb_bonds = int(tmp[1].strip()) # number of bonds
  370. count_line_tags = ['number_of_atoms', 'number_of_bonds', 'number_of_atom_lists', '', 'chiral_flag', 'number_of_stext_entries', '', '', '', '', 'number_of_properties', 'CT_version']
  371. i = 0
  372. while i < len(tmp):
  373. if count_line_tags[i] != '': # if not obsoleted
  374. g.graph[count_line_tags[i]] = tmp[i].strip()
  375. i += 1
  376. # read the atom block.
  377. atom_tags = ['x', 'y', 'z', 'atom_symbol', 'mass_difference', 'charge', 'atom_stereo_parity', 'hydrogen_count_plus_1', 'stereo_care_box', 'valence', 'h0_designator', '', '', 'atom_atom_mapping_number', 'inversion_retention_flag', 'exact_change_flag']
  378. for i in range(0, nb_atoms):
  379. tmp = content[i + 2].split(' ')
  380. tmp = [x for x in tmp if x != '']
  381. g.add_node(i)
  382. j = 0
  383. while j < len(tmp):
  384. if atom_tags[j] != '':
  385. g.nodes[i][atom_tags[j]] = tmp[j].strip()
  386. j += 1
  387. # read the bond block.
  388. bond_tags = ['first_atom_number', 'second_atom_number', 'bond_type', 'bond_stereo', '', 'bond_topology', 'reacting_center_status']
  389. for i in range(0, nb_bonds):
  390. tmp = content[i + g.number_of_nodes() + 2].split(' ')
  391. tmp = [x for x in tmp if x != '']
  392. n1, n2 = int(tmp[0].strip()) - 1, int(tmp[1].strip()) - 1
  393. g.add_edge(n1, n2)
  394. j = 2
  395. while j < len(tmp):
  396. if bond_tags[j] != '':
  397. g.edges[(n1, n2)][bond_tags[j]] = tmp[j].strip()
  398. j += 1
  399. # get label names.
  400. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  401. atom_symbolic = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, None, None, 1, 1, 1]
  402. for nd in g.nodes():
  403. for key in g.nodes[nd]:
  404. if atom_symbolic[atom_tags.index(key)] == 1:
  405. label_names['node_labels'].append(key)
  406. else:
  407. label_names['node_attrs'].append(key)
  408. break
  409. bond_symbolic = [None, None, 1, 1, None, 1, 1]
  410. for ed in g.edges():
  411. for key in g.edges[ed]:
  412. if bond_symbolic[bond_tags.index(key)] == 1:
  413. label_names['edge_labels'].append(key)
  414. else:
  415. label_names['edge_attrs'].append(key)
  416. break
  417. return g, label_names
  418. def load_gxl(self, filename): # @todo: directed graphs.
  419. from os.path import basename
  420. import networkx as nx
  421. import xml.etree.ElementTree as ET
  422. tree = ET.parse(filename)
  423. root = tree.getroot()
  424. index = 0
  425. g = nx.Graph(filename=basename(filename), name=root[0].attrib['id'])
  426. dic = {} # used to retrieve incident nodes of edges
  427. for node in root.iter('node'):
  428. dic[node.attrib['id']] = index
  429. labels = {}
  430. for attr in node.iter('attr'):
  431. labels[attr.attrib['name']] = attr[0].text
  432. g.add_node(index, **labels)
  433. index += 1
  434. for edge in root.iter('edge'):
  435. labels = {}
  436. for attr in edge.iter('attr'):
  437. labels[attr.attrib['name']] = attr[0].text
  438. g.add_edge(dic[edge.attrib['from']], dic[edge.attrib['to']], **labels)
  439. # get label names.
  440. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  441. for node in root.iter('node'):
  442. for attr in node.iter('attr'):
  443. if attr[0].tag == 'int': # @todo: this maybe wrong, and slow.
  444. label_names['node_labels'].append(attr.attrib['name'])
  445. else:
  446. label_names['node_attrs'].append(attr.attrib['name'])
  447. break
  448. for edge in root.iter('edge'):
  449. for attr in edge.iter('attr'):
  450. if attr[0].tag == 'int': # @todo: this maybe wrong, and slow.
  451. label_names['edge_labels'].append(attr.attrib['name'])
  452. else:
  453. label_names['edge_attrs'].append(attr.attrib['name'])
  454. break
  455. return g, label_names
  456. def _append_label_names(self, label_names, new_names):
  457. for key, val in label_names.items():
  458. label_names[key] += [name for name in new_names[key] if name not in val]
  459. @property
  460. def data(self):
  461. return self._graphs, self._targets, self._label_names
  462. @property
  463. def graphs(self):
  464. return self._graphs
  465. @property
  466. def targets(self):
  467. return self._targets
  468. @property
  469. def label_names(self):
  470. return self._label_names
  471. class DataSaver():
  472. def __init__(self, graphs, targets=None, filename='gfile', gformat='gxl', group=None, **kwargs):
  473. """Save list of graphs.
  474. """
  475. import os
  476. dirname_ds = os.path.dirname(filename)
  477. if dirname_ds != '':
  478. dirname_ds += '/'
  479. os.makedirs(dirname_ds, exist_ok=True)
  480. if 'graph_dir' in kwargs:
  481. graph_dir = kwargs['graph_dir'] + '/'
  482. os.makedirs(graph_dir, exist_ok=True)
  483. del kwargs['graph_dir']
  484. else:
  485. graph_dir = dirname_ds
  486. if group == 'xml' and gformat == 'gxl':
  487. with open(filename + '.xml', 'w') as fgroup:
  488. fgroup.write("<?xml version=\"1.0\"?>")
  489. fgroup.write("\n<!DOCTYPE GraphCollection SYSTEM \"http://www.inf.unibz.it/~blumenthal/dtd/GraphCollection.dtd\">")
  490. fgroup.write("\n<GraphCollection>")
  491. for idx, g in enumerate(graphs):
  492. fname_tmp = "graph" + str(idx) + ".gxl"
  493. self.save_gxl(g, graph_dir + fname_tmp, **kwargs)
  494. fgroup.write("\n\t<graph file=\"" + fname_tmp + "\" class=\"" + str(targets[idx]) + "\"/>")
  495. fgroup.write("\n</GraphCollection>")
  496. fgroup.close()
  497. def save_gxl(self, graph, filename, method='default', node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]):
  498. if method == 'default':
  499. gxl_file = open(filename, 'w')
  500. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  501. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  502. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  503. if 'name' in graph.graph:
  504. name = str(graph.graph['name'])
  505. else:
  506. name = 'dummy'
  507. gxl_file.write("<graph id=\"" + name + "\" edgeids=\"false\" edgemode=\"undirected\">\n")
  508. for v, attrs in graph.nodes(data=True):
  509. gxl_file.write("<node id=\"_" + str(v) + "\">")
  510. for l_name in node_labels:
  511. gxl_file.write("<attr name=\"" + l_name + "\"><int>" +
  512. str(attrs[l_name]) + "</int></attr>")
  513. for a_name in node_attrs:
  514. gxl_file.write("<attr name=\"" + a_name + "\"><float>" +
  515. str(attrs[a_name]) + "</float></attr>")
  516. gxl_file.write("</node>\n")
  517. for v1, v2, attrs in graph.edges(data=True):
  518. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">")
  519. for l_name in edge_labels:
  520. gxl_file.write("<attr name=\"" + l_name + "\"><int>" +
  521. str(attrs[l_name]) + "</int></attr>")
  522. for a_name in edge_attrs:
  523. gxl_file.write("<attr name=\"" + a_name + "\"><float>" +
  524. str(attrs[a_name]) + "</float></attr>")
  525. gxl_file.write("</edge>\n")
  526. gxl_file.write("</graph>\n")
  527. gxl_file.write("</gxl>")
  528. gxl_file.close()
  529. elif method == 'benoit':
  530. import xml.etree.ElementTree as ET
  531. root_node = ET.Element('gxl')
  532. attr = dict()
  533. attr['id'] = str(graph.graph['name'])
  534. attr['edgeids'] = 'true'
  535. attr['edgemode'] = 'undirected'
  536. graph_node = ET.SubElement(root_node, 'graph', attrib=attr)
  537. for v in graph:
  538. current_node = ET.SubElement(graph_node, 'node', attrib={'id': str(v)})
  539. for attr in graph.nodes[v].keys():
  540. cur_attr = ET.SubElement(
  541. current_node, 'attr', attrib={'name': attr})
  542. cur_value = ET.SubElement(cur_attr,
  543. graph.nodes[v][attr].__class__.__name__)
  544. cur_value.text = graph.nodes[v][attr]
  545. for v1 in graph:
  546. for v2 in graph[v1]:
  547. if (v1 < v2): # Non oriented graphs
  548. cur_edge = ET.SubElement(
  549. graph_node,
  550. 'edge',
  551. attrib={
  552. 'from': str(v1),
  553. 'to': str(v2)
  554. })
  555. for attr in graph[v1][v2].keys():
  556. cur_attr = ET.SubElement(
  557. cur_edge, 'attr', attrib={'name': attr})
  558. cur_value = ET.SubElement(
  559. cur_attr, graph[v1][v2][attr].__class__.__name__)
  560. cur_value.text = str(graph[v1][v2][attr])
  561. tree = ET.ElementTree(root_node)
  562. tree.write(filename)
  563. elif method == 'gedlib':
  564. # reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22
  565. # pass
  566. gxl_file = open(filename, 'w')
  567. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  568. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  569. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  570. gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"true\" edgemode=\"undirected\">\n")
  571. for v, attrs in graph.nodes(data=True):
  572. gxl_file.write("<node id=\"_" + str(v) + "\">")
  573. gxl_file.write("<attr name=\"" + "chem" + "\"><int>" + str(attrs['chem']) + "</int></attr>")
  574. gxl_file.write("</node>\n")
  575. for v1, v2, attrs in graph.edges(data=True):
  576. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">")
  577. gxl_file.write("<attr name=\"valence\"><int>" + str(attrs['valence']) + "</int></attr>")
  578. # gxl_file.write("<attr name=\"valence\"><int>" + "1" + "</int></attr>")
  579. gxl_file.write("</edge>\n")
  580. gxl_file.write("</graph>\n")
  581. gxl_file.write("</gxl>")
  582. gxl_file.close()
  583. elif method == 'gedlib-letter':
  584. # reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22
  585. # and https://github.com/dbblumenthal/gedlib/blob/master/data/datasets/Letter/HIGH/AP1_0000.gxl
  586. gxl_file = open(filename, 'w')
  587. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  588. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  589. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  590. gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"false\" edgemode=\"undirected\">\n")
  591. for v, attrs in graph.nodes(data=True):
  592. gxl_file.write("<node id=\"_" + str(v) + "\">")
  593. gxl_file.write("<attr name=\"x\"><float>" + str(attrs['attributes'][0]) + "</float></attr>")
  594. gxl_file.write("<attr name=\"y\"><float>" + str(attrs['attributes'][1]) + "</float></attr>")
  595. gxl_file.write("</node>\n")
  596. for v1, v2, attrs in graph.edges(data=True):
  597. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\"/>\n")
  598. gxl_file.write("</graph>\n")
  599. gxl_file.write("</gxl>")
  600. gxl_file.close()
  601. # def loadSDF(filename):
  602. # """load data from structured data file (.sdf file).
  603. # Notes
  604. # ------
  605. # A SDF file contains a group of molecules, represented in the similar way as in MOL format.
  606. # Check `here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__ for detailed structure.
  607. # """
  608. # import networkx as nx
  609. # from os.path import basename
  610. # from tqdm import tqdm
  611. # import sys
  612. # data = []
  613. # with open(filename) as f:
  614. # content = f.read().splitlines()
  615. # index = 0
  616. # pbar = tqdm(total=len(content) + 1, desc='load SDF', file=sys.stdout)
  617. # while index < len(content):
  618. # index_old = index
  619. # g = nx.Graph(name=content[index].strip()) # set name of the graph
  620. # tmp = content[index + 3]
  621. # nb_nodes = int(tmp[:3]) # number of the nodes
  622. # nb_edges = int(tmp[3:6]) # number of the edges
  623. # for i in range(0, nb_nodes):
  624. # tmp = content[i + index + 4]
  625. # g.add_node(i, atom=tmp[31:34].strip())
  626. # for i in range(0, nb_edges):
  627. # tmp = content[i + index + g.number_of_nodes() + 4]
  628. # tmp = [tmp[i:i + 3] for i in range(0, len(tmp), 3)]
  629. # g.add_edge(
  630. # int(tmp[0]) - 1, int(tmp[1]) - 1, bond_type=tmp[2].strip())
  631. # data.append(g)
  632. # index += 4 + g.number_of_nodes() + g.number_of_edges()
  633. # while content[index].strip() != '$$$$': # seperator
  634. # index += 1
  635. # index += 1
  636. # pbar.update(index - index_old)
  637. # pbar.update(1)
  638. # pbar.close()
  639. # return data
  640. # def load_from_cxl(filename):
  641. # import xml.etree.ElementTree as ET
  642. #
  643. # dirname_dataset = dirname(filename)
  644. # tree = ET.parse(filename)
  645. # root = tree.getroot()
  646. # data = []
  647. # y = []
  648. # for graph in root.iter('graph'):
  649. # mol_filename = graph.attrib['file']
  650. # mol_class = graph.attrib['class']
  651. # data.append(load_gxl(dirname_dataset + '/' + mol_filename))
  652. # y.append(mol_class)
  653. if __name__ == '__main__':
  654. # ### Load dataset from .ds file.
  655. # # .ct files.
  656. # ds = {'name': 'Alkane', 'dataset': '../../datasets/Alkane/dataset.ds',
  657. # 'dataset_y': '../../datasets/Alkane/dataset_boiling_point_names.txt'}
  658. # Gn, y = loadDataset(ds['dataset'], filename_y=ds['dataset_y'])
  659. # ds_file = '../../datasets/Acyclic/dataset_bps.ds' # node symb
  660. # Gn, targets, label_names = load_dataset(ds_file)
  661. # ds_file = '../../datasets/MAO/dataset.ds' # node/edge symb
  662. # Gn, targets, label_names = load_dataset(ds_file)
  663. ## ds = {'name': 'PAH', 'dataset': '../../datasets/PAH/dataset.ds'} # unlabeled
  664. ## Gn, y = loadDataset(ds['dataset'])
  665. # print(Gn[1].graph)
  666. # print(Gn[1].nodes(data=True))
  667. # print(Gn[1].edges(data=True))
  668. # print(targets[1])
  669. # # .gxl file.
  670. # ds_file = '../../datasets/monoterpenoides/dataset_10+.ds' # node/edge symb
  671. # Gn, y, label_names = load_dataset(ds_file)
  672. # print(Gn[1].graph)
  673. # print(Gn[1].nodes(data=True))
  674. # print(Gn[1].edges(data=True))
  675. # print(y[1])
  676. # .mat file.
  677. ds_file = '../../datasets/MUTAG_mat/MUTAG.mat'
  678. order = [0, 0, 3, 1, 2]
  679. gloader = DataLoader(ds_file, order=order)
  680. Gn, targets, label_names = gloader.data
  681. print(Gn[1].graph)
  682. print(Gn[1].nodes(data=True))
  683. print(Gn[1].edges(data=True))
  684. print(targets[1])
  685. # ### Convert graph from one format to another.
  686. # # .gxl file.
  687. # import networkx as nx
  688. # ds = {'name': 'monoterpenoides',
  689. # 'dataset': '../../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb
  690. # Gn, y = loadDataset(ds['dataset'])
  691. # y = [int(i) for i in y]
  692. # print(Gn[1].nodes(data=True))
  693. # print(Gn[1].edges(data=True))
  694. # print(y[1])
  695. # # Convert a graph to the proper NetworkX format that can be recognized by library gedlib.
  696. # Gn_new = []
  697. # for G in Gn:
  698. # G_new = nx.Graph()
  699. # for nd, attrs in G.nodes(data=True):
  700. # G_new.add_node(str(nd), chem=attrs['atom'])
  701. # for nd1, nd2, attrs in G.edges(data=True):
  702. # G_new.add_edge(str(nd1), str(nd2), valence=attrs['bond_type'])
  703. ## G_new.add_edge(str(nd1), str(nd2))
  704. # Gn_new.append(G_new)
  705. # print(Gn_new[1].nodes(data=True))
  706. # print(Gn_new[1].edges(data=True))
  707. # print(Gn_new[1])
  708. # filename = '/media/ljia/DATA/research-repo/codes/others/gedlib/tests_linlin/generated_datsets/monoterpenoides/gxl/monoterpenoides'
  709. # xparams = {'method': 'gedlib'}
  710. # saveDataset(Gn, y, gformat='gxl', group='xml', filename=filename, xparams=xparams)
  711. # save dataset.
  712. # ds = {'name': 'MUTAG', 'dataset': '../../datasets/MUTAG/MUTAG.mat',
  713. # 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb
  714. # Gn, y = loadDataset(ds['dataset'], extra_params=ds['extra_params'])
  715. # saveDataset(Gn, y, group='xml', filename='temp/temp')
  716. # test - new way to add labels and attributes.
  717. # dataset = '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt'
  718. # filename = '../../datasets/Fingerprint/Fingerprint_A.txt'
  719. # dataset = '../../datasets/Letter-med/Letter-med_A.txt'
  720. # dataset = '../../datasets/AIDS/AIDS_A.txt'
  721. # dataset = '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'
  722. # Gn, targets, label_names = load_dataset(filename)
  723. pass

A Python package for graph kernels, graph edit distances and graph pre-image problem.