You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

utils.py 900 B

123456789101112131415161718192021222324252627282930
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Thu Oct 29 19:17:36 2020
  5. @author: ljia
  6. """
  7. from gklearn.utils import Dataset
  8. def get_dataset(ds_name):
  9. # The node/edge labels that will not be used in the computation.
  10. if ds_name == 'MAO':
  11. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']}
  12. elif ds_name == 'Monoterpenoides':
  13. irrelevant_labels = {'edge_labels': ['valence']}
  14. elif ds_name == 'MUTAG':
  15. irrelevant_labels = {'edge_labels': ['label_0']}
  16. elif ds_name == 'AIDS_symb':
  17. irrelevant_labels = {'node_attrs': ['chem', 'charge', 'x', 'y'], 'edge_labels': ['valence']}
  18. ds_name = 'AIDS'
  19. # Initialize a Dataset.
  20. dataset = Dataset()
  21. # Load predefined dataset.
  22. dataset.load_predefined_dataset(ds_name)
  23. # Remove irrelevant labels.
  24. dataset.remove_labels(**irrelevant_labels)
  25. print('dataset size:', len(dataset.graphs))
  26. return dataset

A Python package for graph kernels, graph edit distances and graph pre-image problem.