You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

median_preimage_generator_cml.py 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Tue Jun 16 16:04:46 2020
  5. @author: ljia
  6. """
  7. import numpy as np
  8. import time
  9. import random
  10. import multiprocessing
  11. import networkx as nx
  12. from gklearn.preimage import PreimageGenerator
  13. from gklearn.preimage.utils import compute_k_dis
  14. from gklearn.ged.env import GEDEnv
  15. from gklearn.ged.learning import CostMatricesLearner
  16. from gklearn.ged.median import MedianGraphEstimatorPy
  17. from gklearn.ged.median import constant_node_costs, mge_options_to_string
  18. from gklearn.utils.utils import get_graph_kernel_by_name
  19. class MedianPreimageGeneratorCML(PreimageGenerator):
  20. """Generator median preimages by cost matrices learning using the pure Python version of GEDEnv. Works only for symbolic labeled graphs.
  21. """
  22. def __init__(self, dataset=None):
  23. PreimageGenerator.__init__(self, dataset=dataset)
  24. ### arguments to set.
  25. self.__mge = None
  26. self.__ged_options = {}
  27. self.__mge_options = {}
  28. # self.__fit_method = 'k-graphs'
  29. self.__init_method = 'random'
  30. self.__init_ecc = None
  31. self.__parallel = True
  32. self.__n_jobs = multiprocessing.cpu_count()
  33. self.__ds_name = None
  34. # for cml.
  35. self.__time_limit_in_sec = 0
  36. self.__max_itrs = 100
  37. self.__max_itrs_without_update = 3
  38. self.__epsilon_residual = 0.01
  39. self.__epsilon_ec = 0.1
  40. self.__allow_zeros = True
  41. # self.__triangle_rule = True
  42. ### values to compute.
  43. self.__runtime_optimize_ec = None
  44. self.__runtime_generate_preimage = None
  45. self.__runtime_total = None
  46. self.__set_median = None
  47. self.__gen_median = None
  48. self.__best_from_dataset = None
  49. self.__sod_set_median = None
  50. self.__sod_gen_median = None
  51. self.__k_dis_set_median = None
  52. self.__k_dis_gen_median = None
  53. self.__k_dis_dataset = None
  54. self.__node_label_costs = None
  55. self.__edge_label_costs = None
  56. # for cml.
  57. self.__itrs = 0
  58. self.__converged = False
  59. self.__num_updates_ecs = 0
  60. ### values that can be set or to be computed.
  61. self.__edit_cost_constants = []
  62. self.__gram_matrix_unnorm = None
  63. self.__runtime_precompute_gm = None
  64. def set_options(self, **kwargs):
  65. self._kernel_options = kwargs.get('kernel_options', {})
  66. self._graph_kernel = kwargs.get('graph_kernel', None)
  67. self._verbose = kwargs.get('verbose', 2)
  68. self.__ged_options = kwargs.get('ged_options', {})
  69. self.__mge_options = kwargs.get('mge_options', {})
  70. # self.__fit_method = kwargs.get('fit_method', 'k-graphs')
  71. self.__init_method = kwargs.get('init_method', 'random')
  72. self.__init_ecc = kwargs.get('init_ecc', None)
  73. self.__edit_cost_constants = kwargs.get('edit_cost_constants', [])
  74. self.__parallel = kwargs.get('parallel', True)
  75. self.__n_jobs = kwargs.get('n_jobs', multiprocessing.cpu_count())
  76. self.__ds_name = kwargs.get('ds_name', None)
  77. self.__time_limit_in_sec = kwargs.get('time_limit_in_sec', 0)
  78. self.__max_itrs = kwargs.get('max_itrs', 100)
  79. self.__max_itrs_without_update = kwargs.get('max_itrs_without_update', 3)
  80. self.__epsilon_residual = kwargs.get('epsilon_residual', 0.01)
  81. self.__epsilon_ec = kwargs.get('epsilon_ec', 0.1)
  82. self.__gram_matrix_unnorm = kwargs.get('gram_matrix_unnorm', None)
  83. self.__runtime_precompute_gm = kwargs.get('runtime_precompute_gm', None)
  84. self.__allow_zeros = kwargs.get('allow_zeros', True)
  85. # self.__triangle_rule = kwargs.get('triangle_rule', True)
  86. def run(self):
  87. self._graph_kernel = get_graph_kernel_by_name(self._kernel_options['name'],
  88. node_labels=self._dataset.node_labels,
  89. edge_labels=self._dataset.edge_labels,
  90. node_attrs=self._dataset.node_attrs,
  91. edge_attrs=self._dataset.edge_attrs,
  92. ds_infos=self._dataset.get_dataset_infos(keys=['directed']),
  93. kernel_options=self._kernel_options)
  94. # record start time.
  95. start = time.time()
  96. # 1. precompute gram matrix.
  97. if self.__gram_matrix_unnorm is None:
  98. gram_matrix, run_time = self._graph_kernel.compute(self._dataset.graphs, **self._kernel_options)
  99. self.__gram_matrix_unnorm = self._graph_kernel.gram_matrix_unnorm
  100. end_precompute_gm = time.time()
  101. self.__runtime_precompute_gm = end_precompute_gm - start
  102. else:
  103. if self.__runtime_precompute_gm is None:
  104. raise Exception('Parameter "runtime_precompute_gm" must be given when using pre-computed Gram matrix.')
  105. self._graph_kernel.gram_matrix_unnorm = self.__gram_matrix_unnorm
  106. if self._kernel_options['normalize']:
  107. self._graph_kernel.gram_matrix = self._graph_kernel.normalize_gm(np.copy(self.__gram_matrix_unnorm))
  108. else:
  109. self._graph_kernel.gram_matrix = np.copy(self.__gram_matrix_unnorm)
  110. end_precompute_gm = time.time()
  111. start -= self.__runtime_precompute_gm
  112. # if self.__fit_method != 'k-graphs' and self.__fit_method != 'whole-dataset':
  113. # start = time.time()
  114. # self.__runtime_precompute_gm = 0
  115. # end_precompute_gm = start
  116. # 2. optimize edit cost constants.
  117. self.__optimize_edit_cost_vector()
  118. end_optimize_ec = time.time()
  119. self.__runtime_optimize_ec = end_optimize_ec - end_precompute_gm
  120. # 3. compute set median and gen median using optimized edit costs.
  121. if self._verbose >= 2:
  122. print('\nstart computing set median and gen median using optimized edit costs...\n')
  123. self.__gmg_bcu()
  124. end_generate_preimage = time.time()
  125. self.__runtime_generate_preimage = end_generate_preimage - end_optimize_ec
  126. self.__runtime_total = end_generate_preimage - start
  127. if self._verbose >= 2:
  128. print('medians computed.')
  129. print('SOD of the set median: ', self.__sod_set_median)
  130. print('SOD of the generalized median: ', self.__sod_gen_median)
  131. # 4. compute kernel distances to the true median.
  132. if self._verbose >= 2:
  133. print('\nstart computing distances to true median....\n')
  134. self.__compute_distances_to_true_median()
  135. # 5. print out results.
  136. if self._verbose:
  137. print()
  138. print('================================================================================')
  139. print('Finished generation of preimages.')
  140. print('--------------------------------------------------------------------------------')
  141. print('The optimized edit costs:', self.__edit_cost_constants)
  142. print('SOD of the set median:', self.__sod_set_median)
  143. print('SOD of the generalized median:', self.__sod_gen_median)
  144. print('Distance in kernel space for set median:', self.__k_dis_set_median)
  145. print('Distance in kernel space for generalized median:', self.__k_dis_gen_median)
  146. print('Minimum distance in kernel space for each graph in median set:', self.__k_dis_dataset)
  147. print('Time to pre-compute Gram matrix:', self.__runtime_precompute_gm)
  148. print('Time to optimize edit costs:', self.__runtime_optimize_ec)
  149. print('Time to generate pre-images:', self.__runtime_generate_preimage)
  150. print('Total time:', self.__runtime_total)
  151. print('Total number of iterations for optimizing:', self.__itrs)
  152. print('Total number of updating edit costs:', self.__num_updates_ecs)
  153. print('Is optimization of edit costs converged:', self.__converged)
  154. print('================================================================================')
  155. print()
  156. def get_results(self):
  157. results = {}
  158. results['edit_cost_constants'] = self.__edit_cost_constants
  159. results['runtime_precompute_gm'] = self.__runtime_precompute_gm
  160. results['runtime_optimize_ec'] = self.__runtime_optimize_ec
  161. results['runtime_generate_preimage'] = self.__runtime_generate_preimage
  162. results['runtime_total'] = self.__runtime_total
  163. results['sod_set_median'] = self.__sod_set_median
  164. results['sod_gen_median'] = self.__sod_gen_median
  165. results['k_dis_set_median'] = self.__k_dis_set_median
  166. results['k_dis_gen_median'] = self.__k_dis_gen_median
  167. results['k_dis_dataset'] = self.__k_dis_dataset
  168. results['itrs'] = self.__itrs
  169. results['converged'] = self.__converged
  170. results['num_updates_ecc'] = self.__num_updates_ecs
  171. results['mge'] = {}
  172. results['mge']['num_decrease_order'] = self.__mge.get_num_times_order_decreased()
  173. results['mge']['num_increase_order'] = self.__mge.get_num_times_order_increased()
  174. results['mge']['num_converged_descents'] = self.__mge.get_num_converged_descents()
  175. return results
  176. def __optimize_edit_cost_vector(self):
  177. """Learn edit cost vector.
  178. """
  179. # Initialize label costs randomly.
  180. if self.__init_method == 'random':
  181. # Initialize label costs.
  182. self.__initialize_label_costs()
  183. # Optimize edit cost matrices.
  184. self.__optimize_ecm_by_kernel_distances()
  185. # Initialize all label costs with the same value.
  186. elif self.__init_method == 'uniform': # random
  187. pass
  188. elif self.__fit_method == 'random': # random
  189. if self.__ged_options['edit_cost'] == 'LETTER':
  190. self.__edit_cost_constants = random.sample(range(1, 1000), 3)
  191. self.__edit_cost_constants = [item * 0.001 for item in self.__edit_cost_constants]
  192. elif self.__ged_options['edit_cost'] == 'LETTER2':
  193. random.seed(time.time())
  194. self.__edit_cost_constants = random.sample(range(1, 1000), 5)
  195. self.__edit_cost_constants = [item * 0.01 for item in self.__edit_cost_constants]
  196. elif self.__ged_options['edit_cost'] == 'NON_SYMBOLIC':
  197. self.__edit_cost_constants = random.sample(range(1, 1000), 6)
  198. self.__edit_cost_constants = [item * 0.01 for item in self.__edit_cost_constants]
  199. if self._dataset.node_attrs == []:
  200. self.__edit_cost_constants[2] = 0
  201. if self._dataset.edge_attrs == []:
  202. self.__edit_cost_constants[5] = 0
  203. else:
  204. self.__edit_cost_constants = random.sample(range(1, 1000), 6)
  205. self.__edit_cost_constants = [item * 0.01 for item in self.__edit_cost_constants]
  206. if self._verbose >= 2:
  207. print('edit cost constants used:', self.__edit_cost_constants)
  208. elif self.__fit_method == 'expert': # expert
  209. if self.__init_ecc is None:
  210. if self.__ged_options['edit_cost'] == 'LETTER':
  211. self.__edit_cost_constants = [0.9, 1.7, 0.75]
  212. elif self.__ged_options['edit_cost'] == 'LETTER2':
  213. self.__edit_cost_constants = [0.675, 0.675, 0.75, 0.425, 0.425]
  214. else:
  215. self.__edit_cost_constants = [3, 3, 1, 3, 3, 1]
  216. else:
  217. self.__edit_cost_constants = self.__init_ecc
  218. elif self.__fit_method == 'k-graphs':
  219. if self.__init_ecc is None:
  220. if self.__ged_options['edit_cost'] == 'LETTER':
  221. self.__init_ecc = [0.9, 1.7, 0.75]
  222. elif self.__ged_options['edit_cost'] == 'LETTER2':
  223. self.__init_ecc = [0.675, 0.675, 0.75, 0.425, 0.425]
  224. elif self.__ged_options['edit_cost'] == 'NON_SYMBOLIC':
  225. self.__init_ecc = [0, 0, 1, 1, 1, 0]
  226. if self._dataset.node_attrs == []:
  227. self.__init_ecc[2] = 0
  228. if self._dataset.edge_attrs == []:
  229. self.__init_ecc[5] = 0
  230. else:
  231. self.__init_ecc = [3, 3, 1, 3, 3, 1]
  232. # optimize on the k-graph subset.
  233. self.__optimize_ecm_by_kernel_distances()
  234. elif self.__fit_method == 'whole-dataset':
  235. if self.__init_ecc is None:
  236. if self.__ged_options['edit_cost'] == 'LETTER':
  237. self.__init_ecc = [0.9, 1.7, 0.75]
  238. elif self.__ged_options['edit_cost'] == 'LETTER2':
  239. self.__init_ecc = [0.675, 0.675, 0.75, 0.425, 0.425]
  240. else:
  241. self.__init_ecc = [3, 3, 1, 3, 3, 1]
  242. # optimizeon the whole set.
  243. self.__optimize_ecc_by_kernel_distances()
  244. elif self.__fit_method == 'precomputed':
  245. pass
  246. def __initialize_label_costs(self):
  247. self.__initialize_node_label_costs()
  248. self.__initialize_edge_label_costs()
  249. def __initialize_node_label_costs(self):
  250. # Get list of node labels.
  251. nls = self._dataset.get_all_node_labels()
  252. # Generate random costs.
  253. nb_nl = int((len(nls) * (len(nls) - 1)) / 2 + 2 * len(nls))
  254. rand_costs = random.sample(range(1, 10 * nb_nl + 1), nb_nl)
  255. rand_costs /= np.max(rand_costs) # @todo: maybe not needed.
  256. self.__node_label_costs = rand_costs
  257. def __initialize_edge_label_costs(self):
  258. # Get list of edge labels.
  259. els = self._dataset.get_all_edge_labels()
  260. # Generate random costs.
  261. nb_el = int((len(els) * (len(els) - 1)) / 2 + 2 * len(els))
  262. rand_costs = random.sample(range(1, 10 * nb_el + 1), nb_el)
  263. rand_costs /= np.max(rand_costs) # @todo: maybe not needed.
  264. self.__edge_label_costs = rand_costs
  265. def __optimize_ecm_by_kernel_distances(self):
  266. # compute distances in feature space.
  267. dis_k_mat, _, _, _ = self._graph_kernel.compute_distance_matrix()
  268. dis_k_vec = []
  269. for i in range(len(dis_k_mat)):
  270. # for j in range(i, len(dis_k_mat)):
  271. for j in range(i + 1, len(dis_k_mat)):
  272. dis_k_vec.append(dis_k_mat[i, j])
  273. dis_k_vec = np.array(dis_k_vec)
  274. # Set GEDEnv options.
  275. # graphs = [self.__clean_graph(g) for g in self._dataset.graphs]
  276. # self.__edit_cost_constants = self.__init_ecc
  277. options = self.__ged_options.copy()
  278. options['edit_cost_constants'] = self.__edit_cost_constants # @todo: not needed.
  279. options['node_labels'] = self._dataset.node_labels
  280. options['edge_labels'] = self._dataset.edge_labels
  281. # options['node_attrs'] = self._dataset.node_attrs
  282. # options['edge_attrs'] = self._dataset.edge_attrs
  283. options['node_label_costs'] = self.__node_label_costs
  284. options['edge_label_costs'] = self.__edge_label_costs
  285. # Learner cost matrices.
  286. # Initialize cost learner.
  287. cml = CostMatricesLearner(edit_cost='CONSTANT', triangle_rule=False, allow_zeros=True, parallel=self.__parallel, verbose=self._verbose) # @todo
  288. cml.set_update_params(time_limit_in_sec=self.__time_limit_in_sec, max_itrs=self.__max_itrs, max_itrs_without_update=self.__max_itrs_without_update, epsilon_residual=self.__epsilon_residual, epsilon_ec=self.__epsilon_ec)
  289. # Run cost learner.
  290. cml.update(dis_k_vec, self._dataset.graphs, options)
  291. # Get results.
  292. results = cml.get_results()
  293. self.__converged = results['converged']
  294. self.__itrs = results['itrs']
  295. self.__num_updates_ecs = results['num_updates_ecs']
  296. cost_list = results['cost_list']
  297. self.__node_label_costs = cost_list[-1][0:len(self.__node_label_costs)]
  298. self.__edge_label_costs = cost_list[-1][len(self.__node_label_costs):]
  299. def __gmg_bcu(self):
  300. """
  301. The local search algorithm based on block coordinate update (BCU) for estimating a generalized median graph (GMG).
  302. Returns
  303. -------
  304. None.
  305. """
  306. # Set up the ged environment.
  307. ged_env = GEDEnv() # @todo: maybe create a ged_env as a private varible.
  308. # gedlibpy.restart_env()
  309. ged_env.set_edit_cost(self.__ged_options['edit_cost'], edit_cost_constants=self.__edit_cost_constants)
  310. graphs = [self.__clean_graph(g) for g in self._dataset.graphs]
  311. for g in graphs:
  312. ged_env.add_nx_graph(g, '')
  313. graph_ids = ged_env.get_all_graph_ids()
  314. set_median_id = ged_env.add_graph('set_median')
  315. gen_median_id = ged_env.add_graph('gen_median')
  316. ged_env.init(init_type=self.__ged_options['init_option'])
  317. # Set up the madian graph estimator.
  318. self.__mge = MedianGraphEstimatorPy(ged_env, constant_node_costs(self.__ged_options['edit_cost']))
  319. self.__mge.set_refine_method(self.__ged_options['method'], self.__ged_options)
  320. options = self.__mge_options.copy()
  321. if not 'seed' in options:
  322. options['seed'] = int(round(time.time() * 1000)) # @todo: may not work correctly for possible parallel usage.
  323. options['parallel'] = self.__parallel
  324. # Select the GED algorithm.
  325. self.__mge.set_options(mge_options_to_string(options))
  326. self.__mge.set_label_names(node_labels=self._dataset.node_labels,
  327. edge_labels=self._dataset.edge_labels,
  328. node_attrs=self._dataset.node_attrs,
  329. edge_attrs=self._dataset.edge_attrs)
  330. ged_options = self.__ged_options.copy()
  331. if self.__parallel:
  332. ged_options['threads'] = 1
  333. self.__mge.set_init_method(ged_options['method'], ged_options)
  334. self.__mge.set_descent_method(ged_options['method'], ged_options)
  335. # Run the estimator.
  336. self.__mge.run(graph_ids, set_median_id, gen_median_id)
  337. # Get SODs.
  338. self.__sod_set_median = self.__mge.get_sum_of_distances('initialized')
  339. self.__sod_gen_median = self.__mge.get_sum_of_distances('converged')
  340. # Get median graphs.
  341. self.__set_median = ged_env.get_nx_graph(set_median_id)
  342. self.__gen_median = ged_env.get_nx_graph(gen_median_id)
  343. def __compute_distances_to_true_median(self):
  344. # compute distance in kernel space for set median.
  345. kernels_to_sm, _ = self._graph_kernel.compute(self.__set_median, self._dataset.graphs, **self._kernel_options)
  346. kernel_sm, _ = self._graph_kernel.compute(self.__set_median, self.__set_median, **self._kernel_options)
  347. if self._kernel_options['normalize']:
  348. kernels_to_sm = [kernels_to_sm[i] / np.sqrt(self.__gram_matrix_unnorm[i, i] * kernel_sm) for i in range(len(kernels_to_sm))] # normalize
  349. kernel_sm = 1
  350. # @todo: not correct kernel value
  351. gram_with_sm = np.concatenate((np.array([kernels_to_sm]), np.copy(self._graph_kernel.gram_matrix)), axis=0)
  352. gram_with_sm = np.concatenate((np.array([[kernel_sm] + kernels_to_sm]).T, gram_with_sm), axis=1)
  353. self.__k_dis_set_median = compute_k_dis(0, range(1, 1+len(self._dataset.graphs)),
  354. [1 / len(self._dataset.graphs)] * len(self._dataset.graphs),
  355. gram_with_sm, withterm3=False)
  356. # compute distance in kernel space for generalized median.
  357. kernels_to_gm, _ = self._graph_kernel.compute(self.__gen_median, self._dataset.graphs, **self._kernel_options)
  358. kernel_gm, _ = self._graph_kernel.compute(self.__gen_median, self.__gen_median, **self._kernel_options)
  359. if self._kernel_options['normalize']:
  360. kernels_to_gm = [kernels_to_gm[i] / np.sqrt(self.__gram_matrix_unnorm[i, i] * kernel_gm) for i in range(len(kernels_to_gm))] # normalize
  361. kernel_gm = 1
  362. gram_with_gm = np.concatenate((np.array([kernels_to_gm]), np.copy(self._graph_kernel.gram_matrix)), axis=0)
  363. gram_with_gm = np.concatenate((np.array([[kernel_gm] + kernels_to_gm]).T, gram_with_gm), axis=1)
  364. self.__k_dis_gen_median = compute_k_dis(0, range(1, 1+len(self._dataset.graphs)),
  365. [1 / len(self._dataset.graphs)] * len(self._dataset.graphs),
  366. gram_with_gm, withterm3=False)
  367. # compute distance in kernel space for each graph in median set.
  368. k_dis_median_set = []
  369. for idx in range(len(self._dataset.graphs)):
  370. k_dis_median_set.append(compute_k_dis(idx+1, range(1, 1+len(self._dataset.graphs)),
  371. [1 / len(self._dataset.graphs)] * len(self._dataset.graphs),
  372. gram_with_gm, withterm3=False))
  373. idx_k_dis_median_set_min = np.argmin(k_dis_median_set)
  374. self.__k_dis_dataset = k_dis_median_set[idx_k_dis_median_set_min]
  375. self.__best_from_dataset = self._dataset.graphs[idx_k_dis_median_set_min].copy()
  376. if self._verbose >= 2:
  377. print()
  378. print('distance in kernel space for set median:', self.__k_dis_set_median)
  379. print('distance in kernel space for generalized median:', self.__k_dis_gen_median)
  380. print('minimum distance in kernel space for each graph in median set:', self.__k_dis_dataset)
  381. print('distance in kernel space for each graph in median set:', k_dis_median_set)
  382. # def __clean_graph(self, G, node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]):
  383. def __clean_graph(self, G): # @todo: this may not be needed when datafile is updated.
  384. """
  385. Cleans node and edge labels and attributes of the given graph.
  386. """
  387. G_new = nx.Graph(**G.graph)
  388. for nd, attrs in G.nodes(data=True):
  389. G_new.add_node(str(nd)) # @todo: should we keep this as str()?
  390. for l_name in self._dataset.node_labels:
  391. G_new.nodes[str(nd)][l_name] = str(attrs[l_name])
  392. for a_name in self._dataset.node_attrs:
  393. G_new.nodes[str(nd)][a_name] = str(attrs[a_name])
  394. for nd1, nd2, attrs in G.edges(data=True):
  395. G_new.add_edge(str(nd1), str(nd2))
  396. for l_name in self._dataset.edge_labels:
  397. G_new.edges[str(nd1), str(nd2)][l_name] = str(attrs[l_name])
  398. for a_name in self._dataset.edge_attrs:
  399. G_new.edges[str(nd1), str(nd2)][a_name] = str(attrs[a_name])
  400. return G_new
  401. @property
  402. def mge(self):
  403. return self.__mge
  404. @property
  405. def ged_options(self):
  406. return self.__ged_options
  407. @ged_options.setter
  408. def ged_options(self, value):
  409. self.__ged_options = value
  410. @property
  411. def mge_options(self):
  412. return self.__mge_options
  413. @mge_options.setter
  414. def mge_options(self, value):
  415. self.__mge_options = value
  416. @property
  417. def fit_method(self):
  418. return self.__fit_method
  419. @fit_method.setter
  420. def fit_method(self, value):
  421. self.__fit_method = value
  422. @property
  423. def init_ecc(self):
  424. return self.__init_ecc
  425. @init_ecc.setter
  426. def init_ecc(self, value):
  427. self.__init_ecc = value
  428. @property
  429. def set_median(self):
  430. return self.__set_median
  431. @property
  432. def gen_median(self):
  433. return self.__gen_median
  434. @property
  435. def best_from_dataset(self):
  436. return self.__best_from_dataset
  437. @property
  438. def gram_matrix_unnorm(self):
  439. return self.__gram_matrix_unnorm
  440. @gram_matrix_unnorm.setter
  441. def gram_matrix_unnorm(self, value):
  442. self.__gram_matrix_unnorm = value

A Python package for graph kernels, graph edit distances and graph pre-image problem.