You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

structuralspKernel.py 27 kB

5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Thu Sep 27 10:56:23 2018
  5. @author: linlin
  6. @references:
  7. [1] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For
  8. Measuring Similarity of Shapes. InESANN 2007 Apr 25 (pp. 355-360).
  9. """
  10. import sys
  11. import time
  12. from itertools import combinations, product
  13. from functools import partial
  14. from multiprocessing import Pool
  15. from tqdm import tqdm
  16. import networkx as nx
  17. import numpy as np
  18. from gklearn.utils.graphdataset import get_dataset_attributes
  19. from gklearn.utils.parallel import parallel_gm
  20. from gklearn.utils.trie import Trie
  21. def structuralspkernel(*args,
  22. node_label='atom',
  23. edge_weight=None,
  24. edge_label='bond_type',
  25. node_kernels=None,
  26. edge_kernels=None,
  27. compute_method='naive',
  28. parallel='imap_unordered',
  29. # parallel=None,
  30. n_jobs=None,
  31. chunksize=None,
  32. verbose=True):
  33. """Calculate mean average structural shortest path kernels between graphs.
  34. Parameters
  35. ----------
  36. Gn : List of NetworkX graph
  37. List of graphs between which the kernels are calculated.
  38. G1, G2 : NetworkX graphs
  39. Two graphs between which the kernel is calculated.
  40. node_label : string
  41. Node attribute used as label. The default node label is atom.
  42. edge_weight : string
  43. Edge attribute name corresponding to the edge weight. Applied for the
  44. computation of the shortest paths.
  45. edge_label : string
  46. Edge attribute used as label. The default edge label is bond_type.
  47. node_kernels : dict
  48. A dictionary of kernel functions for nodes, including 3 items: 'symb'
  49. for symbolic node labels, 'nsymb' for non-symbolic node labels, 'mix'
  50. for both labels. The first 2 functions take two node labels as
  51. parameters, and the 'mix' function takes 4 parameters, a symbolic and a
  52. non-symbolic label for each the two nodes. Each label is in form of 2-D
  53. dimension array (n_samples, n_features). Each function returns a number
  54. as the kernel value. Ignored when nodes are unlabeled.
  55. edge_kernels : dict
  56. A dictionary of kernel functions for edges, including 3 items: 'symb'
  57. for symbolic edge labels, 'nsymb' for non-symbolic edge labels, 'mix'
  58. for both labels. The first 2 functions take two edge labels as
  59. parameters, and the 'mix' function takes 4 parameters, a symbolic and a
  60. non-symbolic label for each the two edges. Each label is in form of 2-D
  61. dimension array (n_samples, n_features). Each function returns a number
  62. as the kernel value. Ignored when edges are unlabeled.
  63. compute_method : string
  64. Computation method to store the shortest paths and compute the graph
  65. kernel. The Following choices are available:
  66. 'trie': store paths as tries.
  67. 'naive': store paths to lists.
  68. n_jobs : int
  69. Number of jobs for parallelization.
  70. Return
  71. ------
  72. Kmatrix : Numpy matrix
  73. Kernel matrix, each element of which is the mean average structural
  74. shortest path kernel between 2 praphs.
  75. """
  76. # pre-process
  77. Gn = args[0] if len(args) == 1 else [args[0], args[1]]
  78. Gn = [g.copy() for g in Gn]
  79. weight = None
  80. if edge_weight is None:
  81. if verbose:
  82. print('\n None edge weight specified. Set all weight to 1.\n')
  83. else:
  84. try:
  85. some_weight = list(
  86. nx.get_edge_attributes(Gn[0], edge_weight).values())[0]
  87. if isinstance(some_weight, (float, int)):
  88. weight = edge_weight
  89. else:
  90. if verbose:
  91. print(
  92. '\n Edge weight with name %s is not float or integer. Set all weight to 1.\n'
  93. % edge_weight)
  94. except:
  95. if verbose:
  96. print(
  97. '\n Edge weight with name "%s" is not found in the edge attributes. Set all weight to 1.\n'
  98. % edge_weight)
  99. ds_attrs = get_dataset_attributes(
  100. Gn,
  101. attr_names=['node_labeled', 'node_attr_dim', 'edge_labeled',
  102. 'edge_attr_dim', 'is_directed'],
  103. node_label=node_label, edge_label=edge_label)
  104. start_time = time.time()
  105. # get shortest paths of each graph in Gn
  106. if parallel == 'imap_unordered':
  107. splist = [None] * len(Gn)
  108. pool = Pool(n_jobs)
  109. itr = zip(Gn, range(0, len(Gn)))
  110. if chunksize is None:
  111. if len(Gn) < 100 * n_jobs:
  112. chunksize = int(len(Gn) / n_jobs) + 1
  113. else:
  114. chunksize = 100
  115. # get shortest path graphs of Gn
  116. if compute_method == 'trie':
  117. getsp_partial = partial(wrapper_getSP_trie, weight, ds_attrs['is_directed'])
  118. else:
  119. getsp_partial = partial(wrapper_getSP_naive, weight, ds_attrs['is_directed'])
  120. if verbose:
  121. iterator = tqdm(pool.imap_unordered(getsp_partial, itr, chunksize),
  122. desc='getting shortest paths', file=sys.stdout)
  123. else:
  124. iterator = pool.imap_unordered(getsp_partial, itr, chunksize)
  125. for i, sp in iterator:
  126. splist[i] = sp
  127. # time.sleep(10)
  128. pool.close()
  129. pool.join()
  130. # ---- direct running, normally use single CPU core. ----
  131. elif parallel is None:
  132. splist = []
  133. if verbose:
  134. iterator = tqdm(Gn, desc='getting sp graphs', file=sys.stdout)
  135. else:
  136. iterator = Gn
  137. if compute_method == 'trie':
  138. for g in iterator:
  139. splist.append(get_sps_as_trie(g, weight, ds_attrs['is_directed']))
  140. else:
  141. for g in iterator:
  142. splist.append(get_shortest_paths(g, weight, ds_attrs['is_directed']))
  143. # ss = 0
  144. # ss += sys.getsizeof(splist)
  145. # for spss in splist:
  146. # ss += sys.getsizeof(spss)
  147. # for spp in spss:
  148. # ss += sys.getsizeof(spp)
  149. # time.sleep(20)
  150. # # ---- only for the Fast Computation of Shortest Path Kernel (FCSP)
  151. # sp_ml = [0] * len(Gn) # shortest path matrices
  152. # for i in result_sp:
  153. # sp_ml[i[0]] = i[1]
  154. # edge_x_g = [[] for i in range(len(sp_ml))]
  155. # edge_y_g = [[] for i in range(len(sp_ml))]
  156. # edge_w_g = [[] for i in range(len(sp_ml))]
  157. # for idx, item in enumerate(sp_ml):
  158. # for i1 in range(len(item)):
  159. # for i2 in range(i1 + 1, len(item)):
  160. # if item[i1, i2] != np.inf:
  161. # edge_x_g[idx].append(i1)
  162. # edge_y_g[idx].append(i2)
  163. # edge_w_g[idx].append(item[i1, i2])
  164. # print(len(edge_x_g[0]))
  165. # print(len(edge_y_g[0]))
  166. # print(len(edge_w_g[0]))
  167. Kmatrix = np.zeros((len(Gn), len(Gn)))
  168. # ---- use pool.imap_unordered to parallel and track progress. ----
  169. if parallel == 'imap_unordered':
  170. def init_worker(spl_toshare, gs_toshare):
  171. global G_spl, G_gs
  172. G_spl = spl_toshare
  173. G_gs = gs_toshare
  174. if compute_method == 'trie':
  175. do_partial = partial(wrapper_ssp_do_trie, ds_attrs, node_label, edge_label,
  176. node_kernels, edge_kernels)
  177. parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker,
  178. glbv=(splist, Gn), n_jobs=n_jobs, chunksize=chunksize, verbose=verbose)
  179. else:
  180. do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label,
  181. node_kernels, edge_kernels)
  182. parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker,
  183. glbv=(splist, Gn), n_jobs=n_jobs, chunksize=chunksize, verbose=verbose)
  184. # ---- direct running, normally use single CPU core. ----
  185. elif parallel is None:
  186. from itertools import combinations_with_replacement
  187. itr = combinations_with_replacement(range(0, len(Gn)), 2)
  188. if verbose:
  189. iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout)
  190. else:
  191. iterator = itr
  192. if compute_method == 'trie':
  193. for i, j in iterator:
  194. kernel = ssp_do_trie(Gn[i], Gn[j], splist[i], splist[j],
  195. ds_attrs, node_label, edge_label, node_kernels, edge_kernels)
  196. Kmatrix[i][j] = kernel
  197. Kmatrix[j][i] = kernel
  198. else:
  199. for i, j in iterator:
  200. kernel = structuralspkernel_do(Gn[i], Gn[j], splist[i], splist[j],
  201. ds_attrs, node_label, edge_label, node_kernels, edge_kernels)
  202. # if(kernel > 1):
  203. # print("error here ")
  204. Kmatrix[i][j] = kernel
  205. Kmatrix[j][i] = kernel
  206. # # ---- use pool.map to parallel. ----
  207. # pool = Pool(n_jobs)
  208. # do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label,
  209. # node_kernels, edge_kernels)
  210. # itr = zip(combinations_with_replacement(Gn, 2),
  211. # combinations_with_replacement(splist, 2),
  212. # combinations_with_replacement(range(0, len(Gn)), 2))
  213. # for i, j, kernel in tqdm(
  214. # pool.map(do_partial, itr), desc='calculating kernels',
  215. # file=sys.stdout):
  216. # Kmatrix[i][j] = kernel
  217. # Kmatrix[j][i] = kernel
  218. # pool.close()
  219. # pool.join()
  220. # # ---- use pool.imap_unordered to parallel and track progress. ----
  221. # do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label,
  222. # node_kernels, edge_kernels)
  223. # itr = zip(combinations_with_replacement(Gn, 2),
  224. # combinations_with_replacement(splist, 2),
  225. # combinations_with_replacement(range(0, len(Gn)), 2))
  226. # len_itr = int(len(Gn) * (len(Gn) + 1) / 2)
  227. # if len_itr < 1000 * n_jobs:
  228. # chunksize = int(len_itr / n_jobs) + 1
  229. # else:
  230. # chunksize = 1000
  231. # from contextlib import closing
  232. # with closing(Pool(n_jobs)) as pool:
  233. # for i, j, kernel in tqdm(
  234. # pool.imap_unordered(do_partial, itr, 1000),
  235. # desc='calculating kernels',
  236. # file=sys.stdout):
  237. # Kmatrix[i][j] = kernel
  238. # Kmatrix[j][i] = kernel
  239. # pool.close()
  240. # pool.join()
  241. run_time = time.time() - start_time
  242. if verbose:
  243. print("\n --- shortest path kernel matrix of size %d built in %s seconds ---"
  244. % (len(Gn), run_time))
  245. return Kmatrix, run_time
  246. def structuralspkernel_do(g1, g2, spl1, spl2, ds_attrs, node_label, edge_label,
  247. node_kernels, edge_kernels):
  248. kernel = 0
  249. # First, compute shortest path matrices, method borrowed from FCSP.
  250. vk_dict = getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs)
  251. # Then, compute kernels between all pairs of edges, which is an idea of
  252. # extension of FCSP. It suits sparse graphs, which is the most case we
  253. # went though. For dense graphs, this would be slow.
  254. ek_dict = getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs)
  255. # compute graph kernels
  256. if vk_dict:
  257. if ek_dict:
  258. for p1, p2 in product(spl1, spl2):
  259. if len(p1) == len(p2):
  260. kpath = vk_dict[(p1[0], p2[0])]
  261. if kpath:
  262. for idx in range(1, len(p1)):
  263. kpath *= vk_dict[(p1[idx], p2[idx])] * \
  264. ek_dict[((p1[idx-1], p1[idx]),
  265. (p2[idx-1], p2[idx]))]
  266. if not kpath:
  267. break
  268. kernel += kpath # add up kernels of all paths
  269. else:
  270. for p1, p2 in product(spl1, spl2):
  271. if len(p1) == len(p2):
  272. kpath = vk_dict[(p1[0], p2[0])]
  273. if kpath:
  274. for idx in range(1, len(p1)):
  275. kpath *= vk_dict[(p1[idx], p2[idx])]
  276. if not kpath:
  277. break
  278. kernel += kpath # add up kernels of all paths
  279. else:
  280. if ek_dict:
  281. for p1, p2 in product(spl1, spl2):
  282. if len(p1) == len(p2):
  283. if len(p1) == 0:
  284. kernel += 1
  285. else:
  286. kpath = 1
  287. for idx in range(0, len(p1) - 1):
  288. kpath *= ek_dict[((p1[idx], p1[idx+1]),
  289. (p2[idx], p2[idx+1]))]
  290. if not kpath:
  291. break
  292. kernel += kpath # add up kernels of all paths
  293. else:
  294. for p1, p2 in product(spl1, spl2):
  295. if len(p1) == len(p2):
  296. kernel += 1
  297. try:
  298. kernel = kernel / (len(spl1) * len(spl2)) # calculate mean average
  299. except ZeroDivisionError:
  300. print(spl1, spl2)
  301. print(g1.nodes(data=True))
  302. print(g1.edges(data=True))
  303. raise Exception
  304. # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation
  305. # # compute vertex kernel matrix
  306. # try:
  307. # vk_mat = np.zeros((nx.number_of_nodes(g1),
  308. # nx.number_of_nodes(g2)))
  309. # g1nl = enumerate(g1.nodes(data=True))
  310. # g2nl = enumerate(g2.nodes(data=True))
  311. # for i1, n1 in g1nl:
  312. # for i2, n2 in g2nl:
  313. # vk_mat[i1][i2] = kn(
  314. # n1[1][node_label], n2[1][node_label],
  315. # [n1[1]['attributes']], [n2[1]['attributes']])
  316. # range1 = range(0, len(edge_w_g[i]))
  317. # range2 = range(0, len(edge_w_g[j]))
  318. # for i1 in range1:
  319. # x1 = edge_x_g[i][i1]
  320. # y1 = edge_y_g[i][i1]
  321. # w1 = edge_w_g[i][i1]
  322. # for i2 in range2:
  323. # x2 = edge_x_g[j][i2]
  324. # y2 = edge_y_g[j][i2]
  325. # w2 = edge_w_g[j][i2]
  326. # ke = (w1 == w2)
  327. # if ke > 0:
  328. # kn1 = vk_mat[x1][x2] * vk_mat[y1][y2]
  329. # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2]
  330. # Kmatrix += kn1 + kn2
  331. return kernel
  332. def wrapper_ssp_do(ds_attrs, node_label, edge_label, node_kernels,
  333. edge_kernels, itr):
  334. i = itr[0]
  335. j = itr[1]
  336. return i, j, structuralspkernel_do(G_gs[i], G_gs[j], G_spl[i], G_spl[j],
  337. ds_attrs, node_label, edge_label,
  338. node_kernels, edge_kernels)
  339. def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label,
  340. node_kernels, edge_kernels):
  341. # # traverse all paths in graph1. Deep-first search is applied.
  342. # def traverseBothTrie(root, trie2, kernel, pcurrent=[]):
  343. # for key, node in root['children'].items():
  344. # pcurrent.append(key)
  345. # if node['isEndOfWord']:
  346. # # print(node['count'])
  347. # traverseTrie2(trie2.root, pcurrent, kernel,
  348. # pcurrent=[])
  349. # if node['children'] != {}:
  350. # traverseBothTrie(node, trie2, kernel, pcurrent)
  351. # else:
  352. # del pcurrent[-1]
  353. # if pcurrent != []:
  354. # del pcurrent[-1]
  355. #
  356. #
  357. # # traverse all paths in graph2 and find out those that are not in
  358. # # graph1. Deep-first search is applied.
  359. # def traverseTrie2(root, p1, kernel, pcurrent=[]):
  360. # for key, node in root['children'].items():
  361. # pcurrent.append(key)
  362. # if node['isEndOfWord']:
  363. # # print(node['count'])
  364. # kernel[0] += computePathKernel(p1, pcurrent, vk_dict, ek_dict)
  365. # if node['children'] != {}:
  366. # traverseTrie2(node, p1, kernel, pcurrent)
  367. # else:
  368. # del pcurrent[-1]
  369. # if pcurrent != []:
  370. # del pcurrent[-1]
  371. #
  372. #
  373. # kernel = [0]
  374. #
  375. # # First, compute shortest path matrices, method borrowed from FCSP.
  376. # vk_dict = getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs)
  377. # # Then, compute kernels between all pairs of edges, which is an idea of
  378. # # extension of FCSP. It suits sparse graphs, which is the most case we
  379. # # went though. For dense graphs, this would be slow.
  380. # ek_dict = getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs)
  381. #
  382. # # compute graph kernels
  383. # traverseBothTrie(trie1[0].root, trie2[0], kernel)
  384. #
  385. # kernel = kernel[0] / (trie1[1] * trie2[1]) # calculate mean average
  386. # # traverse all paths in graph1. Deep-first search is applied.
  387. # def traverseBothTrie(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  388. # for key, node in root['children'].items():
  389. # pcurrent.append(key)
  390. # if node['isEndOfWord']:
  391. # # print(node['count'])
  392. # traverseTrie2(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  393. # pcurrent=[])
  394. # if node['children'] != {}:
  395. # traverseBothTrie(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  396. # else:
  397. # del pcurrent[-1]
  398. # if pcurrent != []:
  399. # del pcurrent[-1]
  400. #
  401. #
  402. # # traverse all paths in graph2 and find out those that are not in
  403. # # graph1. Deep-first search is applied.
  404. # def traverseTrie2(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  405. # for key, node in root['children'].items():
  406. # pcurrent.append(key)
  407. # if node['isEndOfWord']:
  408. # # print(node['count'])
  409. # kernel[0] += computePathKernel(p1, pcurrent, vk_dict, ek_dict)
  410. # if node['children'] != {}:
  411. # traverseTrie2(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  412. # else:
  413. # del pcurrent[-1]
  414. # if pcurrent != []:
  415. # del pcurrent[-1]
  416. kernel = [0]
  417. # First, compute shortest path matrices, method borrowed from FCSP.
  418. vk_dict = getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs)
  419. # Then, compute kernels between all pairs of edges, which is an idea of
  420. # extension of FCSP. It suits sparse graphs, which is the most case we
  421. # went though. For dense graphs, this would be slow.
  422. ek_dict = getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs)
  423. # compute graph kernels
  424. # traverseBothTrie(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  425. if vk_dict:
  426. if ek_dict:
  427. traverseBothTriem(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  428. else:
  429. traverseBothTriev(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  430. else:
  431. if ek_dict:
  432. traverseBothTriee(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  433. else:
  434. traverseBothTrieu(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  435. kernel = kernel[0] / (trie1[1] * trie2[1]) # calculate mean average
  436. return kernel
  437. def wrapper_ssp_do_trie(ds_attrs, node_label, edge_label, node_kernels,
  438. edge_kernels, itr):
  439. i = itr[0]
  440. j = itr[1]
  441. return i, j, ssp_do_trie(G_gs[i], G_gs[j], G_spl[i], G_spl[j], ds_attrs,
  442. node_label, edge_label, node_kernels, edge_kernels)
  443. def getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs):
  444. # compute shortest path matrices, method borrowed from FCSP.
  445. vk_dict = {} # shortest path matrices dict
  446. if ds_attrs['node_labeled']:
  447. # node symb and non-synb labeled
  448. if ds_attrs['node_attr_dim'] > 0:
  449. kn = node_kernels['mix']
  450. for n1, n2 in product(
  451. g1.nodes(data=True), g2.nodes(data=True)):
  452. vk_dict[(n1[0], n2[0])] = kn(
  453. n1[1][node_label], n2[1][node_label],
  454. n1[1]['attributes'], n2[1]['attributes'])
  455. # node symb labeled
  456. else:
  457. kn = node_kernels['symb']
  458. for n1 in g1.nodes(data=True):
  459. for n2 in g2.nodes(data=True):
  460. vk_dict[(n1[0], n2[0])] = kn(n1[1][node_label],
  461. n2[1][node_label])
  462. else:
  463. # node non-synb labeled
  464. if ds_attrs['node_attr_dim'] > 0:
  465. kn = node_kernels['nsymb']
  466. for n1 in g1.nodes(data=True):
  467. for n2 in g2.nodes(data=True):
  468. vk_dict[(n1[0], n2[0])] = kn(n1[1]['attributes'],
  469. n2[1]['attributes'])
  470. # node unlabeled
  471. else:
  472. pass
  473. return vk_dict
  474. def getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs):
  475. # compute kernels between all pairs of edges, which is an idea of
  476. # extension of FCSP. It suits sparse graphs, which is the most case we
  477. # went though. For dense graphs, this would be slow.
  478. ek_dict = {} # dict of edge kernels
  479. if ds_attrs['edge_labeled']:
  480. # edge symb and non-synb labeled
  481. if ds_attrs['edge_attr_dim'] > 0:
  482. ke = edge_kernels['mix']
  483. for e1, e2 in product(
  484. g1.edges(data=True), g2.edges(data=True)):
  485. ek_temp = ke(e1[2][edge_label], e2[2][edge_label],
  486. e1[2]['attributes'], e2[2]['attributes'])
  487. ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
  488. ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
  489. ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
  490. ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
  491. # edge symb labeled
  492. else:
  493. ke = edge_kernels['symb']
  494. for e1 in g1.edges(data=True):
  495. for e2 in g2.edges(data=True):
  496. ek_temp = ke(e1[2][edge_label], e2[2][edge_label])
  497. ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
  498. ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
  499. ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
  500. ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
  501. else:
  502. # edge non-synb labeled
  503. if ds_attrs['edge_attr_dim'] > 0:
  504. ke = edge_kernels['nsymb']
  505. for e1 in g1.edges(data=True):
  506. for e2 in g2.edges(data=True):
  507. ek_temp = ke(e1[2]['attributes'], e2[2]['attributes'])
  508. ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
  509. ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
  510. ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
  511. ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
  512. # edge unlabeled
  513. else:
  514. pass
  515. return ek_dict
  516. # traverse all paths in graph1. Deep-first search is applied.
  517. def traverseBothTriem(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  518. for key, node in root['children'].items():
  519. pcurrent.append(key)
  520. if node['isEndOfWord']:
  521. # print(node['count'])
  522. traverseTrie2m(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  523. pcurrent=[])
  524. if node['children'] != {}:
  525. traverseBothTriem(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  526. else:
  527. del pcurrent[-1]
  528. if pcurrent != []:
  529. del pcurrent[-1]
  530. # traverse all paths in graph2 and find out those that are not in
  531. # graph1. Deep-first search is applied.
  532. def traverseTrie2m(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  533. for key, node in root['children'].items():
  534. pcurrent.append(key)
  535. if node['isEndOfWord']:
  536. # print(node['count'])
  537. if len(p1) == len(pcurrent):
  538. kpath = vk_dict[(p1[0], pcurrent[0])]
  539. if kpath:
  540. for idx in range(1, len(p1)):
  541. kpath *= vk_dict[(p1[idx], pcurrent[idx])] * \
  542. ek_dict[((p1[idx-1], p1[idx]),
  543. (pcurrent[idx-1], pcurrent[idx]))]
  544. if not kpath:
  545. break
  546. kernel[0] += kpath # add up kernels of all paths
  547. if node['children'] != {}:
  548. traverseTrie2m(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  549. else:
  550. del pcurrent[-1]
  551. if pcurrent != []:
  552. del pcurrent[-1]
  553. # traverse all paths in graph1. Deep-first search is applied.
  554. def traverseBothTriev(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  555. for key, node in root['children'].items():
  556. pcurrent.append(key)
  557. if node['isEndOfWord']:
  558. # print(node['count'])
  559. traverseTrie2v(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  560. pcurrent=[])
  561. if node['children'] != {}:
  562. traverseBothTriev(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  563. else:
  564. del pcurrent[-1]
  565. if pcurrent != []:
  566. del pcurrent[-1]
  567. # traverse all paths in graph2 and find out those that are not in
  568. # graph1. Deep-first search is applied.
  569. def traverseTrie2v(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  570. for key, node in root['children'].items():
  571. pcurrent.append(key)
  572. if node['isEndOfWord']:
  573. # print(node['count'])
  574. if len(p1) == len(pcurrent):
  575. kpath = vk_dict[(p1[0], pcurrent[0])]
  576. if kpath:
  577. for idx in range(1, len(p1)):
  578. kpath *= vk_dict[(p1[idx], pcurrent[idx])]
  579. if not kpath:
  580. break
  581. kernel[0] += kpath # add up kernels of all paths
  582. if node['children'] != {}:
  583. traverseTrie2v(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  584. else:
  585. del pcurrent[-1]
  586. if pcurrent != []:
  587. del pcurrent[-1]
  588. # traverse all paths in graph1. Deep-first search is applied.
  589. def traverseBothTriee(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  590. for key, node in root['children'].items():
  591. pcurrent.append(key)
  592. if node['isEndOfWord']:
  593. # print(node['count'])
  594. traverseTrie2e(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  595. pcurrent=[])
  596. if node['children'] != {}:
  597. traverseBothTriee(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  598. else:
  599. del pcurrent[-1]
  600. if pcurrent != []:
  601. del pcurrent[-1]
  602. # traverse all paths in graph2 and find out those that are not in
  603. # graph1. Deep-first search is applied.
  604. def traverseTrie2e(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  605. for key, node in root['children'].items():
  606. pcurrent.append(key)
  607. if node['isEndOfWord']:
  608. # print(node['count'])
  609. if len(p1) == len(pcurrent):
  610. if len(p1) == 0:
  611. kernel += 1
  612. else:
  613. kpath = 1
  614. for idx in range(0, len(p1) - 1):
  615. kpath *= ek_dict[((p1[idx], p1[idx+1]),
  616. (pcurrent[idx], pcurrent[idx+1]))]
  617. if not kpath:
  618. break
  619. kernel[0] += kpath # add up kernels of all paths
  620. if node['children'] != {}:
  621. traverseTrie2e(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  622. else:
  623. del pcurrent[-1]
  624. if pcurrent != []:
  625. del pcurrent[-1]
  626. # traverse all paths in graph1. Deep-first search is applied.
  627. def traverseBothTrieu(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  628. for key, node in root['children'].items():
  629. pcurrent.append(key)
  630. if node['isEndOfWord']:
  631. # print(node['count'])
  632. traverseTrie2u(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  633. pcurrent=[])
  634. if node['children'] != {}:
  635. traverseBothTrieu(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  636. else:
  637. del pcurrent[-1]
  638. if pcurrent != []:
  639. del pcurrent[-1]
  640. # traverse all paths in graph2 and find out those that are not in
  641. # graph1. Deep-first search is applied.
  642. def traverseTrie2u(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  643. for key, node in root['children'].items():
  644. pcurrent.append(key)
  645. if node['isEndOfWord']:
  646. # print(node['count'])
  647. if len(p1) == len(pcurrent):
  648. kernel[0] += 1
  649. if node['children'] != {}:
  650. traverseTrie2u(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  651. else:
  652. del pcurrent[-1]
  653. if pcurrent != []:
  654. del pcurrent[-1]
  655. #def computePathKernel(p1, p2, vk_dict, ek_dict):
  656. # kernel = 0
  657. # if vk_dict:
  658. # if ek_dict:
  659. # if len(p1) == len(p2):
  660. # kpath = vk_dict[(p1[0], p2[0])]
  661. # if kpath:
  662. # for idx in range(1, len(p1)):
  663. # kpath *= vk_dict[(p1[idx], p2[idx])] * \
  664. # ek_dict[((p1[idx-1], p1[idx]),
  665. # (p2[idx-1], p2[idx]))]
  666. # if not kpath:
  667. # break
  668. # kernel += kpath # add up kernels of all paths
  669. # else:
  670. # if len(p1) == len(p2):
  671. # kpath = vk_dict[(p1[0], p2[0])]
  672. # if kpath:
  673. # for idx in range(1, len(p1)):
  674. # kpath *= vk_dict[(p1[idx], p2[idx])]
  675. # if not kpath:
  676. # break
  677. # kernel += kpath # add up kernels of all paths
  678. # else:
  679. # if ek_dict:
  680. # if len(p1) == len(p2):
  681. # if len(p1) == 0:
  682. # kernel += 1
  683. # else:
  684. # kpath = 1
  685. # for idx in range(0, len(p1) - 1):
  686. # kpath *= ek_dict[((p1[idx], p1[idx+1]),
  687. # (p2[idx], p2[idx+1]))]
  688. # if not kpath:
  689. # break
  690. # kernel += kpath # add up kernels of all paths
  691. # else:
  692. # if len(p1) == len(p2):
  693. # kernel += 1
  694. #
  695. # return kernel
  696. def get_shortest_paths(G, weight, directed):
  697. """Get all shortest paths of a graph.
  698. Parameters
  699. ----------
  700. G : NetworkX graphs
  701. The graphs whose paths are calculated.
  702. weight : string/None
  703. edge attribute used as weight to calculate the shortest path.
  704. directed: boolean
  705. Whether graph is directed.
  706. Return
  707. ------
  708. sp : list of list
  709. List of shortest paths of the graph, where each path is represented by a list of nodes.
  710. """
  711. sp = []
  712. for n1, n2 in combinations(G.nodes(), 2):
  713. try:
  714. spltemp = list(nx.all_shortest_paths(G, n1, n2, weight=weight))
  715. except nx.NetworkXNoPath: # nodes not connected
  716. # sp.append([])
  717. pass
  718. else:
  719. sp += spltemp
  720. # each edge walk is counted twice, starting from both its extreme nodes.
  721. if not directed:
  722. sp += [sptemp[::-1] for sptemp in spltemp]
  723. # add single nodes as length 0 paths.
  724. sp += [[n] for n in G.nodes()]
  725. return sp
  726. def wrapper_getSP_naive(weight, directed, itr_item):
  727. g = itr_item[0]
  728. i = itr_item[1]
  729. return i, get_shortest_paths(g, weight, directed)
  730. def get_sps_as_trie(G, weight, directed):
  731. """Get all shortest paths of a graph and insert them into a trie.
  732. Parameters
  733. ----------
  734. G : NetworkX graphs
  735. The graphs whose paths are calculated.
  736. weight : string/None
  737. edge attribute used as weight to calculate the shortest path.
  738. directed: boolean
  739. Whether graph is directed.
  740. Return
  741. ------
  742. sp : list of list
  743. List of shortest paths of the graph, where each path is represented by a list of nodes.
  744. """
  745. sptrie = Trie()
  746. lensp = 0
  747. for n1, n2 in combinations(G.nodes(), 2):
  748. try:
  749. spltemp = list(nx.all_shortest_paths(G, n1, n2, weight=weight))
  750. except nx.NetworkXNoPath: # nodes not connected
  751. pass
  752. else:
  753. lensp += len(spltemp)
  754. if not directed:
  755. lensp += len(spltemp)
  756. for sp in spltemp:
  757. sptrie.insertWord(sp)
  758. # each edge walk is counted twice, starting from both its extreme nodes.
  759. if not directed:
  760. sptrie.insertWord(sp[::-1])
  761. # add single nodes as length 0 paths.
  762. for n in G.nodes():
  763. sptrie.insertWord([n])
  764. return sptrie, lensp + nx.number_of_nodes(G)
  765. def wrapper_getSP_trie(weight, directed, itr_item):
  766. g = itr_item[0]
  767. i = itr_item[1]
  768. return i, get_sps_as_trie(g, weight, directed)

A Python package for graph kernels, graph edit distances and graph pre-image problem.