You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_spkernel.py 3.2 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. from libs import *
  2. from pygraph.kernels.spKernel import spkernel
  3. dslist = [
  4. # {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', 'task': 'regression'}, # node_labeled
  5. # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge_labeled
  6. # {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds',}, # unlabeled
  7. {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, # fully_labeled
  8. # {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds',},
  9. # {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat',
  10. # 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}},
  11. # {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression',
  12. # 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt',},
  13. # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'},
  14. # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'},
  15. {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},
  16. # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'},
  17. # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'},
  18. # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'},
  19. # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'},
  20. # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'},
  21. # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'},
  22. # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'},
  23. # {'name': 'D&D', 'dataset': '../datasets/D&D/DD.mat',
  24. # 'extra_params': {'am_sp_al_nl_el': [0, 1, 2, 1, -1]}},
  25. # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'},
  26. # {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat',
  27. # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}},
  28. # {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat',
  29. # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}},
  30. # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',
  31. # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',},
  32. # # not working below
  33. # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},
  34. # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},
  35. # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},
  36. # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},
  37. ]
  38. estimator = spkernel
  39. param_grid_precomputed = {}
  40. param_grid = [{'C': np.logspace(-10, 10, num = 41, base = 10)},
  41. {'alpha': np.logspace(-10, 10, num = 41, base = 10)}]
  42. for ds in dslist:
  43. print()
  44. print(ds['name'])
  45. model_selection_for_precomputed_kernel(
  46. ds['dataset'], estimator, param_grid_precomputed,
  47. (param_grid[1] if ('task' in ds and ds['task'] == 'regression') else param_grid[0]),
  48. (ds['task'] if 'task' in ds else 'classification'), NUM_TRIALS=30,
  49. datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
  50. extra_params=(ds['extra_params'] if 'extra_params' in ds else None))
  51. print()

A Python package for graph kernels, graph edit distances and graph pre-image problem.