You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

file_managers.py 30 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825
  1. """ Utilities function to manage graph files
  2. """
  3. from os.path import dirname, splitext
  4. class DataLoader():
  5. def __init__(self, filename, filename_targets=None, gformat=None, **kwargs):
  6. """Read graph data from filename and load them as NetworkX graphs.
  7. Parameters
  8. ----------
  9. filename : string
  10. The name of the file from where the dataset is read.
  11. filename_targets : string
  12. The name of file of the targets corresponding to graphs.
  13. Notes
  14. -----
  15. This function supports following graph dataset formats:
  16. 'ds': load data from .ds file. See comments of function loadFromDS for a example.
  17. 'cxl': load data from Graph eXchange Language file (.cxl file). See
  18. `here <http://www.gupro.de/GXL/Introduction/background.html>`__ for detail.
  19. 'sdf': load data from structured data file (.sdf file). See
  20. `here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__
  21. for details.
  22. 'mat': Load graph data from a MATLAB (up to version 7.1) .mat file. See
  23. README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__
  24. for details.
  25. 'txt': Load graph data from the TUDataset. See
  26. `here <https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets>`__
  27. for details. Note here filename is the name of either .txt file in
  28. the dataset directory.
  29. """
  30. extension = splitext(filename)[1][1:]
  31. if extension == "ds":
  32. self._graphs, self._targets, self._label_names = self.load_from_ds(filename, filename_targets)
  33. elif extension == "cxl":
  34. dir_dataset = kwargs.get('dirname_dataset', None)
  35. self._graphs, self._targets, self._label_names = self.load_from_xml(filename, dir_dataset)
  36. elif extension == 'xml':
  37. dir_dataset = kwargs.get('dirname_dataset', None)
  38. self._graphs, self._targets, self._label_names = self.load_from_xml(filename, dir_dataset)
  39. elif extension == "mat":
  40. order = kwargs.get('order')
  41. self._graphs, self._targets, self._label_names = self.load_mat(filename, order)
  42. elif extension == 'txt':
  43. self._graphs, self._targets, self._label_names = self.load_tud(filename)
  44. else:
  45. raise ValueError('The input file with the extension ".', extension, '" is not supported. The supported extensions includes: ".ds", ".cxl", ".xml", ".mat", ".txt".')
  46. def load_from_ds(self, filename, filename_targets):
  47. """Load data from .ds file.
  48. Possible graph formats include:
  49. '.ct': see function load_ct for detail.
  50. '.gxl': see dunction load_gxl for detail.
  51. Note these graph formats are checked automatically by the extensions of
  52. graph files.
  53. """
  54. dirname_dataset = dirname(filename)
  55. data = []
  56. y = []
  57. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  58. with open(filename) as fn:
  59. content = fn.read().splitlines()
  60. content = [line for line in content if not line.endswith('.ds')]
  61. extension = splitext(content[0].split(' ')[0])[1][1:]
  62. if extension == 'ct':
  63. load_file_fun = self.load_ct
  64. elif extension == 'gxl' or extension == 'sdf': # @todo: .sdf not tested yet.
  65. load_file_fun = self.load_gxl
  66. if filename_targets is None or filename_targets == '':
  67. for i in range(0, len(content)):
  68. tmp = content[i].split(' ')
  69. # remove the '#'s in file names
  70. g, l_names = load_file_fun(dirname_dataset + '/' + tmp[0].replace('#', '', 1))
  71. data.append(g)
  72. self._append_label_names(label_names, l_names)
  73. y.append(float(tmp[1]))
  74. else: # targets in a seperate file
  75. for i in range(0, len(content)):
  76. tmp = content[i]
  77. # remove the '#'s in file names
  78. g, l_names = load_file_fun(dirname_dataset + '/' + tmp.replace('#', '', 1))
  79. data.append(g)
  80. self._append_label_names(label_names, l_names)
  81. with open(filename_targets) as fnt:
  82. content_y = fnt.read().splitlines()
  83. # assume entries in filename and filename_targets have the same order.
  84. for item in content_y:
  85. tmp = item.split(' ')
  86. # assume the 3rd entry in a line is y (for Alkane dataset)
  87. y.append(float(tmp[2]))
  88. return data, y, label_names
  89. def load_from_xml(self, filename, dir_dataset=None):
  90. import xml.etree.ElementTree as ET
  91. if dir_dataset is not None:
  92. dir_dataset = dir_dataset
  93. else:
  94. dir_dataset = dirname(filename)
  95. tree = ET.parse(filename)
  96. root = tree.getroot()
  97. data = []
  98. y = []
  99. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  100. for graph in root.iter('graph'):
  101. mol_filename = graph.attrib['file']
  102. mol_class = graph.attrib['class']
  103. g, l_names = self.load_gxl(dir_dataset + '/' + mol_filename)
  104. data.append(g)
  105. self._append_label_names(label_names, l_names)
  106. y.append(mol_class)
  107. return data, y, label_names
  108. def load_mat(self, filename, order): # @todo: need to be updated (auto order) or deprecated.
  109. """Load graph data from a MATLAB (up to version 7.1) .mat file.
  110. Notes
  111. ------
  112. A MAT file contains a struct array containing graphs, and a column vector lx containing a class label for each graph.
  113. Check README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__ for detailed structure.
  114. """
  115. from scipy.io import loadmat
  116. import numpy as np
  117. import networkx as nx
  118. data = []
  119. content = loadmat(filename)
  120. for key, value in content.items():
  121. if key[0] == 'l': # class label
  122. y = np.transpose(value)[0].tolist()
  123. elif key[0] != '_':
  124. # if adjacency matrix is not compressed / edge label exists
  125. if order[1] == 0:
  126. for i, item in enumerate(value[0]):
  127. g = nx.Graph(name=i) # set name of the graph
  128. nl = np.transpose(item[order[3]][0][0][0]) # node label
  129. for index, label in enumerate(nl[0]):
  130. g.add_node(index, label_1=str(label))
  131. el = item[order[4]][0][0][0] # edge label
  132. for edge in el:
  133. g.add_edge(edge[0] - 1, edge[1] - 1, label_1=str(edge[2]))
  134. data.append(g)
  135. else:
  136. for i, item in enumerate(value[0]):
  137. g = nx.Graph(name=i) # set name of the graph
  138. nl = np.transpose(item[order[3]][0][0][0]) # node label
  139. for index, label in enumerate(nl[0]):
  140. g.add_node(index, label_1=str(label))
  141. sam = item[order[0]] # sparse adjacency matrix
  142. index_no0 = sam.nonzero()
  143. for col, row in zip(index_no0[0], index_no0[1]):
  144. g.add_edge(col, row)
  145. data.append(g)
  146. label_names = {'node_labels': ['label_1'], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  147. if order[1] == 0:
  148. label_names['edge_labels'].append('label_1')
  149. return data, y, label_names
  150. def load_tud(self, filename):
  151. """Load graph data from TUD dataset files.
  152. Notes
  153. ------
  154. The graph data is loaded from separate files.
  155. Check README in `downloadable file <http://tiny.cc/PK_MLJ_data>`__, 2018 for detailed structure.
  156. """
  157. import networkx as nx
  158. from os import listdir
  159. from os.path import dirname, basename
  160. def get_infos_from_readme(frm): # @todo: add README (cuniform), maybe node/edge label maps.
  161. """Get information from DS_label_readme.txt file.
  162. """
  163. def get_label_names_from_line(line):
  164. """Get names of labels/attributes from a line.
  165. """
  166. str_names = line.split('[')[1].split(']')[0]
  167. names = str_names.split(',')
  168. names = [attr.strip() for attr in names]
  169. return names
  170. def get_class_label_map(label_map_strings):
  171. label_map = {}
  172. for string in label_map_strings:
  173. integer, label = string.split('\t')
  174. label_map[int(integer.strip())] = label.strip()
  175. return label_map
  176. label_names = {'node_labels': [], 'node_attrs': [],
  177. 'edge_labels': [], 'edge_attrs': []}
  178. class_label_map = None
  179. class_label_map_strings = []
  180. with open(frm) as rm:
  181. content_rm = rm.read().splitlines()
  182. i = 0
  183. while i < len(content_rm):
  184. line = content_rm[i].strip()
  185. # get node/edge labels and attributes.
  186. if line.startswith('Node labels:'):
  187. label_names['node_labels'] = get_label_names_from_line(line)
  188. elif line.startswith('Node attributes:'):
  189. label_names['node_attrs'] = get_label_names_from_line(line)
  190. elif line.startswith('Edge labels:'):
  191. label_names['edge_labels'] = get_label_names_from_line(line)
  192. elif line.startswith('Edge attributes:'):
  193. label_names['edge_attrs'] = get_label_names_from_line(line)
  194. # get class label map.
  195. elif line.startswith('Class labels were converted to integer values using this map:'):
  196. i += 2
  197. line = content_rm[i].strip()
  198. while line != '' and i < len(content_rm):
  199. class_label_map_strings.append(line)
  200. i += 1
  201. line = content_rm[i].strip()
  202. class_label_map = get_class_label_map(class_label_map_strings)
  203. i += 1
  204. return label_names, class_label_map
  205. # get dataset name.
  206. dirname_dataset = dirname(filename)
  207. filename = basename(filename)
  208. fn_split = filename.split('_A')
  209. ds_name = fn_split[0].strip()
  210. # load data file names
  211. for name in listdir(dirname_dataset):
  212. if ds_name + '_A' in name:
  213. fam = dirname_dataset + '/' + name
  214. elif ds_name + '_graph_indicator' in name:
  215. fgi = dirname_dataset + '/' + name
  216. elif ds_name + '_graph_labels' in name:
  217. fgl = dirname_dataset + '/' + name
  218. elif ds_name + '_node_labels' in name:
  219. fnl = dirname_dataset + '/' + name
  220. elif ds_name + '_edge_labels' in name:
  221. fel = dirname_dataset + '/' + name
  222. elif ds_name + '_edge_attributes' in name:
  223. fea = dirname_dataset + '/' + name
  224. elif ds_name + '_node_attributes' in name:
  225. fna = dirname_dataset + '/' + name
  226. elif ds_name + '_graph_attributes' in name:
  227. fga = dirname_dataset + '/' + name
  228. elif ds_name + '_label_readme' in name:
  229. frm = dirname_dataset + '/' + name
  230. # this is supposed to be the node attrs, make sure to put this as the last 'elif'
  231. elif ds_name + '_attributes' in name:
  232. fna = dirname_dataset + '/' + name
  233. # get labels and attributes names.
  234. if 'frm' in locals():
  235. label_names, class_label_map = get_infos_from_readme(frm)
  236. else:
  237. label_names = {'node_labels': [], 'node_attrs': [],
  238. 'edge_labels': [], 'edge_attrs': []}
  239. class_label_map = None
  240. with open(fgi) as gi:
  241. content_gi = gi.read().splitlines() # graph indicator
  242. with open(fam) as am:
  243. content_am = am.read().splitlines() # adjacency matrix
  244. # load targets.
  245. if 'fgl' in locals():
  246. with open(fgl) as gl:
  247. content_targets = gl.read().splitlines() # targets (classification)
  248. targets = [float(i) for i in content_targets]
  249. elif 'fga' in locals():
  250. with open(fga) as ga:
  251. content_targets = ga.read().splitlines() # targets (regression)
  252. targets = [int(i) for i in content_targets]
  253. else:
  254. raise Exception('Can not find targets file. Please make sure there is a "', ds_name, '_graph_labels.txt" or "', ds_name, '_graph_attributes.txt"', 'file in your dataset folder.')
  255. if class_label_map is not None:
  256. targets = [class_label_map[t] for t in targets]
  257. # create graphs and add nodes
  258. data = [nx.Graph(name=str(i)) for i in range(0, len(content_targets))]
  259. if 'fnl' in locals():
  260. with open(fnl) as nl:
  261. content_nl = nl.read().splitlines() # node labels
  262. for idx, line in enumerate(content_gi):
  263. # transfer to int first in case of unexpected blanks
  264. data[int(line) - 1].add_node(idx)
  265. labels = [l.strip() for l in content_nl[idx].split(',')]
  266. if label_names['node_labels'] == []: # @todo: need fix bug.
  267. for i, label in enumerate(labels):
  268. l_name = 'label_' + str(i)
  269. data[int(line) - 1].nodes[idx][l_name] = label
  270. label_names['node_labels'].append(l_name)
  271. else:
  272. for i, l_name in enumerate(label_names['node_labels']):
  273. data[int(line) - 1].nodes[idx][l_name] = labels[i]
  274. else:
  275. for i, line in enumerate(content_gi):
  276. data[int(line) - 1].add_node(i)
  277. # add edges
  278. for line in content_am:
  279. tmp = line.split(',')
  280. n1 = int(tmp[0]) - 1
  281. n2 = int(tmp[1]) - 1
  282. # ignore edge weight here.
  283. g = int(content_gi[n1]) - 1
  284. data[g].add_edge(n1, n2)
  285. # add edge labels
  286. if 'fel' in locals():
  287. with open(fel) as el:
  288. content_el = el.read().splitlines()
  289. for idx, line in enumerate(content_el):
  290. labels = [l.strip() for l in line.split(',')]
  291. n = [int(i) - 1 for i in content_am[idx].split(',')]
  292. g = int(content_gi[n[0]]) - 1
  293. if label_names['edge_labels'] == []:
  294. for i, label in enumerate(labels):
  295. l_name = 'label_' + str(i)
  296. data[g].edges[n[0], n[1]][l_name] = label
  297. label_names['edge_labels'].append(l_name)
  298. else:
  299. for i, l_name in enumerate(label_names['edge_labels']):
  300. data[g].edges[n[0], n[1]][l_name] = labels[i]
  301. # add node attributes
  302. if 'fna' in locals():
  303. with open(fna) as na:
  304. content_na = na.read().splitlines()
  305. for idx, line in enumerate(content_na):
  306. attrs = [a.strip() for a in line.split(',')]
  307. g = int(content_gi[idx]) - 1
  308. if label_names['node_attrs'] == []:
  309. for i, attr in enumerate(attrs):
  310. a_name = 'attr_' + str(i)
  311. data[g].nodes[idx][a_name] = attr
  312. label_names['node_attrs'].append(a_name)
  313. else:
  314. for i, a_name in enumerate(label_names['node_attrs']):
  315. data[g].nodes[idx][a_name] = attrs[i]
  316. # add edge attributes
  317. if 'fea' in locals():
  318. with open(fea) as ea:
  319. content_ea = ea.read().splitlines()
  320. for idx, line in enumerate(content_ea):
  321. attrs = [a.strip() for a in line.split(',')]
  322. n = [int(i) - 1 for i in content_am[idx].split(',')]
  323. g = int(content_gi[n[0]]) - 1
  324. if label_names['edge_attrs'] == []:
  325. for i, attr in enumerate(attrs):
  326. a_name = 'attr_' + str(i)
  327. data[g].edges[n[0], n[1]][a_name] = attr
  328. label_names['edge_attrs'].append(a_name)
  329. else:
  330. for i, a_name in enumerate(label_names['edge_attrs']):
  331. data[g].edges[n[0], n[1]][a_name] = attrs[i]
  332. return data, targets, label_names
  333. def load_ct(self, filename): # @todo: this function is only tested on CTFile V2000; header not considered; only simple cases (atoms and bonds are considered.)
  334. """load data from a Chemical Table (.ct) file.
  335. Notes
  336. ------
  337. a typical example of data in .ct is like this:
  338. 3 2 <- number of nodes and edges
  339. 0.0000 0.0000 0.0000 C <- each line describes a node (x,y,z + label)
  340. 0.0000 0.0000 0.0000 C
  341. 0.0000 0.0000 0.0000 O
  342. 1 3 1 1 <- each line describes an edge : to, from, bond type, bond stereo
  343. 2 3 1 1
  344. Check `CTFile Formats file <https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&ved=2ahUKEwivhaSdjsTlAhVhx4UKHczHA8gQFjAJegQIARAC&url=https%3A%2F%2Fwww.daylight.com%2Fmeetings%2Fmug05%2FKappler%2Fctfile.pdf&usg=AOvVaw1cDNrrmMClkFPqodlF2inS>`__
  345. for detailed format discription.
  346. """
  347. import networkx as nx
  348. from os.path import basename
  349. g = nx.Graph()
  350. with open(filename) as f:
  351. content = f.read().splitlines()
  352. g = nx.Graph(name=str(content[0]), filename=basename(filename)) # set name of the graph
  353. # read the counts line.
  354. tmp = content[1].split(' ')
  355. tmp = [x for x in tmp if x != '']
  356. nb_atoms = int(tmp[0].strip()) # number of atoms
  357. nb_bonds = int(tmp[1].strip()) # number of bonds
  358. count_line_tags = ['number_of_atoms', 'number_of_bonds', 'number_of_atom_lists', '', 'chiral_flag', 'number_of_stext_entries', '', '', '', '', 'number_of_properties', 'CT_version']
  359. i = 0
  360. while i < len(tmp):
  361. if count_line_tags[i] != '': # if not obsoleted
  362. g.graph[count_line_tags[i]] = tmp[i].strip()
  363. i += 1
  364. # read the atom block.
  365. atom_tags = ['x', 'y', 'z', 'atom_symbol', 'mass_difference', 'charge', 'atom_stereo_parity', 'hydrogen_count_plus_1', 'stereo_care_box', 'valence', 'h0_designator', '', '', 'atom_atom_mapping_number', 'inversion_retention_flag', 'exact_change_flag']
  366. for i in range(0, nb_atoms):
  367. tmp = content[i + 2].split(' ')
  368. tmp = [x for x in tmp if x != '']
  369. g.add_node(i)
  370. j = 0
  371. while j < len(tmp):
  372. if atom_tags[j] != '':
  373. g.nodes[i][atom_tags[j]] = tmp[j].strip()
  374. j += 1
  375. # read the bond block.
  376. bond_tags = ['first_atom_number', 'second_atom_number', 'bond_type', 'bond_stereo', '', 'bond_topology', 'reacting_center_status']
  377. for i in range(0, nb_bonds):
  378. tmp = content[i + g.number_of_nodes() + 2].split(' ')
  379. tmp = [x for x in tmp if x != '']
  380. n1, n2 = int(tmp[0].strip()) - 1, int(tmp[1].strip()) - 1
  381. g.add_edge(n1, n2)
  382. j = 2
  383. while j < len(tmp):
  384. if bond_tags[j] != '':
  385. g.edges[(n1, n2)][bond_tags[j]] = tmp[j].strip()
  386. j += 1
  387. # get label names.
  388. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  389. atom_symbolic = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, None, None, 1, 1, 1]
  390. for nd in g.nodes():
  391. for key in g.nodes[nd]:
  392. if atom_symbolic[atom_tags.index(key)] == 1:
  393. label_names['node_labels'].append(key)
  394. else:
  395. label_names['node_attrs'].append(key)
  396. break
  397. bond_symbolic = [None, None, 1, 1, None, 1, 1]
  398. for ed in g.edges():
  399. for key in g.edges[ed]:
  400. if bond_symbolic[bond_tags.index(key)] == 1:
  401. label_names['edge_labels'].append(key)
  402. else:
  403. label_names['edge_attrs'].append(key)
  404. break
  405. return g, label_names
  406. def load_gxl(self, filename): # @todo: directed graphs.
  407. from os.path import basename
  408. import networkx as nx
  409. import xml.etree.ElementTree as ET
  410. tree = ET.parse(filename)
  411. root = tree.getroot()
  412. index = 0
  413. g = nx.Graph(filename=basename(filename), name=root[0].attrib['id'])
  414. dic = {} # used to retrieve incident nodes of edges
  415. for node in root.iter('node'):
  416. dic[node.attrib['id']] = index
  417. labels = {}
  418. for attr in node.iter('attr'):
  419. labels[attr.attrib['name']] = attr[0].text
  420. g.add_node(index, **labels)
  421. index += 1
  422. for edge in root.iter('edge'):
  423. labels = {}
  424. for attr in edge.iter('attr'):
  425. labels[attr.attrib['name']] = attr[0].text
  426. g.add_edge(dic[edge.attrib['from']], dic[edge.attrib['to']], **labels)
  427. # get label names.
  428. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  429. for node in root.iter('node'):
  430. for attr in node.iter('attr'):
  431. if attr[0].tag == 'int': # @todo: this maybe wrong, and slow.
  432. label_names['node_labels'].append(attr.attrib['name'])
  433. else:
  434. label_names['node_attrs'].append(attr.attrib['name'])
  435. break
  436. for edge in root.iter('edge'):
  437. for attr in edge.iter('attr'):
  438. if attr[0].tag == 'int': # @todo: this maybe wrong, and slow.
  439. label_names['edge_labels'].append(attr.attrib['name'])
  440. else:
  441. label_names['edge_attrs'].append(attr.attrib['name'])
  442. break
  443. return g, label_names
  444. def _append_label_names(self, label_names, new_names):
  445. for key, val in label_names.items():
  446. label_names[key] += [name for name in new_names[key] if name not in val]
  447. @property
  448. def data(self):
  449. return self._graphs, self._targets, self._label_names
  450. @property
  451. def graphs(self):
  452. return self._graphs
  453. @property
  454. def targets(self):
  455. return self._targets
  456. @property
  457. def label_names(self):
  458. return self._label_names
  459. class DataSaver():
  460. def __init__(self, graphs, targets=None, filename='gfile', gformat='gxl', group=None, **kwargs):
  461. """Save list of graphs.
  462. """
  463. import os
  464. dirname_ds = os.path.dirname(filename)
  465. if dirname_ds != '':
  466. dirname_ds += '/'
  467. os.makedirs(dirname_ds, exist_ok=True)
  468. if 'graph_dir' in kwargs:
  469. graph_dir = kwargs['graph_dir'] + '/'
  470. os.makedirs(graph_dir, exist_ok=True)
  471. del kwargs['graph_dir']
  472. else:
  473. graph_dir = dirname_ds
  474. if group == 'xml' and gformat == 'gxl':
  475. with open(filename + '.xml', 'w') as fgroup:
  476. fgroup.write("<?xml version=\"1.0\"?>")
  477. fgroup.write("\n<!DOCTYPE GraphCollection SYSTEM \"http://www.inf.unibz.it/~blumenthal/dtd/GraphCollection.dtd\">")
  478. fgroup.write("\n<GraphCollection>")
  479. for idx, g in enumerate(graphs):
  480. fname_tmp = "graph" + str(idx) + ".gxl"
  481. self.save_gxl(g, graph_dir + fname_tmp, **kwargs)
  482. fgroup.write("\n\t<graph file=\"" + fname_tmp + "\" class=\"" + str(targets[idx]) + "\"/>")
  483. fgroup.write("\n</GraphCollection>")
  484. fgroup.close()
  485. def save_gxl(self, graph, filename, method='default', node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]):
  486. if method == 'default':
  487. gxl_file = open(filename, 'w')
  488. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  489. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  490. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  491. if 'name' in graph.graph:
  492. name = str(graph.graph['name'])
  493. else:
  494. name = 'dummy'
  495. gxl_file.write("<graph id=\"" + name + "\" edgeids=\"false\" edgemode=\"undirected\">\n")
  496. for v, attrs in graph.nodes(data=True):
  497. gxl_file.write("<node id=\"_" + str(v) + "\">")
  498. for l_name in node_labels:
  499. gxl_file.write("<attr name=\"" + l_name + "\"><int>" +
  500. str(attrs[l_name]) + "</int></attr>")
  501. for a_name in node_attrs:
  502. gxl_file.write("<attr name=\"" + a_name + "\"><float>" +
  503. str(attrs[a_name]) + "</float></attr>")
  504. gxl_file.write("</node>\n")
  505. for v1, v2, attrs in graph.edges(data=True):
  506. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">")
  507. for l_name in edge_labels:
  508. gxl_file.write("<attr name=\"" + l_name + "\"><int>" +
  509. str(attrs[l_name]) + "</int></attr>")
  510. for a_name in edge_attrs:
  511. gxl_file.write("<attr name=\"" + a_name + "\"><float>" +
  512. str(attrs[a_name]) + "</float></attr>")
  513. gxl_file.write("</edge>\n")
  514. gxl_file.write("</graph>\n")
  515. gxl_file.write("</gxl>")
  516. gxl_file.close()
  517. elif method == 'benoit':
  518. import xml.etree.ElementTree as ET
  519. root_node = ET.Element('gxl')
  520. attr = dict()
  521. attr['id'] = str(graph.graph['name'])
  522. attr['edgeids'] = 'true'
  523. attr['edgemode'] = 'undirected'
  524. graph_node = ET.SubElement(root_node, 'graph', attrib=attr)
  525. for v in graph:
  526. current_node = ET.SubElement(graph_node, 'node', attrib={'id': str(v)})
  527. for attr in graph.nodes[v].keys():
  528. cur_attr = ET.SubElement(
  529. current_node, 'attr', attrib={'name': attr})
  530. cur_value = ET.SubElement(cur_attr,
  531. graph.nodes[v][attr].__class__.__name__)
  532. cur_value.text = graph.nodes[v][attr]
  533. for v1 in graph:
  534. for v2 in graph[v1]:
  535. if (v1 < v2): # Non oriented graphs
  536. cur_edge = ET.SubElement(
  537. graph_node,
  538. 'edge',
  539. attrib={
  540. 'from': str(v1),
  541. 'to': str(v2)
  542. })
  543. for attr in graph[v1][v2].keys():
  544. cur_attr = ET.SubElement(
  545. cur_edge, 'attr', attrib={'name': attr})
  546. cur_value = ET.SubElement(
  547. cur_attr, graph[v1][v2][attr].__class__.__name__)
  548. cur_value.text = str(graph[v1][v2][attr])
  549. tree = ET.ElementTree(root_node)
  550. tree.write(filename)
  551. elif method == 'gedlib':
  552. # reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22
  553. # pass
  554. gxl_file = open(filename, 'w')
  555. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  556. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  557. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  558. gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"true\" edgemode=\"undirected\">\n")
  559. for v, attrs in graph.nodes(data=True):
  560. gxl_file.write("<node id=\"_" + str(v) + "\">")
  561. gxl_file.write("<attr name=\"" + "chem" + "\"><int>" + str(attrs['chem']) + "</int></attr>")
  562. gxl_file.write("</node>\n")
  563. for v1, v2, attrs in graph.edges(data=True):
  564. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">")
  565. gxl_file.write("<attr name=\"valence\"><int>" + str(attrs['valence']) + "</int></attr>")
  566. # gxl_file.write("<attr name=\"valence\"><int>" + "1" + "</int></attr>")
  567. gxl_file.write("</edge>\n")
  568. gxl_file.write("</graph>\n")
  569. gxl_file.write("</gxl>")
  570. gxl_file.close()
  571. elif method == 'gedlib-letter':
  572. # reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22
  573. # and https://github.com/dbblumenthal/gedlib/blob/master/data/datasets/Letter/HIGH/AP1_0000.gxl
  574. gxl_file = open(filename, 'w')
  575. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  576. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  577. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  578. gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"false\" edgemode=\"undirected\">\n")
  579. for v, attrs in graph.nodes(data=True):
  580. gxl_file.write("<node id=\"_" + str(v) + "\">")
  581. gxl_file.write("<attr name=\"x\"><float>" + str(attrs['attributes'][0]) + "</float></attr>")
  582. gxl_file.write("<attr name=\"y\"><float>" + str(attrs['attributes'][1]) + "</float></attr>")
  583. gxl_file.write("</node>\n")
  584. for v1, v2, attrs in graph.edges(data=True):
  585. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\"/>\n")
  586. gxl_file.write("</graph>\n")
  587. gxl_file.write("</gxl>")
  588. gxl_file.close()
  589. # def loadSDF(filename):
  590. # """load data from structured data file (.sdf file).
  591. # Notes
  592. # ------
  593. # A SDF file contains a group of molecules, represented in the similar way as in MOL format.
  594. # Check `here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__ for detailed structure.
  595. # """
  596. # import networkx as nx
  597. # from os.path import basename
  598. # from tqdm import tqdm
  599. # import sys
  600. # data = []
  601. # with open(filename) as f:
  602. # content = f.read().splitlines()
  603. # index = 0
  604. # pbar = tqdm(total=len(content) + 1, desc='load SDF', file=sys.stdout)
  605. # while index < len(content):
  606. # index_old = index
  607. # g = nx.Graph(name=content[index].strip()) # set name of the graph
  608. # tmp = content[index + 3]
  609. # nb_nodes = int(tmp[:3]) # number of the nodes
  610. # nb_edges = int(tmp[3:6]) # number of the edges
  611. # for i in range(0, nb_nodes):
  612. # tmp = content[i + index + 4]
  613. # g.add_node(i, atom=tmp[31:34].strip())
  614. # for i in range(0, nb_edges):
  615. # tmp = content[i + index + g.number_of_nodes() + 4]
  616. # tmp = [tmp[i:i + 3] for i in range(0, len(tmp), 3)]
  617. # g.add_edge(
  618. # int(tmp[0]) - 1, int(tmp[1]) - 1, bond_type=tmp[2].strip())
  619. # data.append(g)
  620. # index += 4 + g.number_of_nodes() + g.number_of_edges()
  621. # while content[index].strip() != '$$$$': # seperator
  622. # index += 1
  623. # index += 1
  624. # pbar.update(index - index_old)
  625. # pbar.update(1)
  626. # pbar.close()
  627. # return data
  628. # def load_from_cxl(filename):
  629. # import xml.etree.ElementTree as ET
  630. #
  631. # dirname_dataset = dirname(filename)
  632. # tree = ET.parse(filename)
  633. # root = tree.getroot()
  634. # data = []
  635. # y = []
  636. # for graph in root.iter('graph'):
  637. # mol_filename = graph.attrib['file']
  638. # mol_class = graph.attrib['class']
  639. # data.append(load_gxl(dirname_dataset + '/' + mol_filename))
  640. # y.append(mol_class)
  641. if __name__ == '__main__':
  642. # ### Load dataset from .ds file.
  643. # # .ct files.
  644. # ds = {'name': 'Alkane', 'dataset': '../../datasets/Alkane/dataset.ds',
  645. # 'dataset_y': '../../datasets/Alkane/dataset_boiling_point_names.txt'}
  646. # Gn, y = loadDataset(ds['dataset'], filename_y=ds['dataset_y'])
  647. # ds_file = '../../datasets/Acyclic/dataset_bps.ds' # node symb
  648. # Gn, targets, label_names = load_dataset(ds_file)
  649. # ds_file = '../../datasets/MAO/dataset.ds' # node/edge symb
  650. # Gn, targets, label_names = load_dataset(ds_file)
  651. ## ds = {'name': 'PAH', 'dataset': '../../datasets/PAH/dataset.ds'} # unlabeled
  652. ## Gn, y = loadDataset(ds['dataset'])
  653. # print(Gn[1].graph)
  654. # print(Gn[1].nodes(data=True))
  655. # print(Gn[1].edges(data=True))
  656. # print(targets[1])
  657. # # .gxl file.
  658. # ds_file = '../../datasets/monoterpenoides/dataset_10+.ds' # node/edge symb
  659. # Gn, y, label_names = load_dataset(ds_file)
  660. # print(Gn[1].graph)
  661. # print(Gn[1].nodes(data=True))
  662. # print(Gn[1].edges(data=True))
  663. # print(y[1])
  664. # .mat file.
  665. ds_file = '../../datasets/MUTAG_mat/MUTAG.mat'
  666. order = [0, 0, 3, 1, 2]
  667. gloader = DataLoader(ds_file, order=order)
  668. Gn, targets, label_names = gloader.data
  669. print(Gn[1].graph)
  670. print(Gn[1].nodes(data=True))
  671. print(Gn[1].edges(data=True))
  672. print(targets[1])
  673. # ### Convert graph from one format to another.
  674. # # .gxl file.
  675. # import networkx as nx
  676. # ds = {'name': 'monoterpenoides',
  677. # 'dataset': '../../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb
  678. # Gn, y = loadDataset(ds['dataset'])
  679. # y = [int(i) for i in y]
  680. # print(Gn[1].nodes(data=True))
  681. # print(Gn[1].edges(data=True))
  682. # print(y[1])
  683. # # Convert a graph to the proper NetworkX format that can be recognized by library gedlib.
  684. # Gn_new = []
  685. # for G in Gn:
  686. # G_new = nx.Graph()
  687. # for nd, attrs in G.nodes(data=True):
  688. # G_new.add_node(str(nd), chem=attrs['atom'])
  689. # for nd1, nd2, attrs in G.edges(data=True):
  690. # G_new.add_edge(str(nd1), str(nd2), valence=attrs['bond_type'])
  691. ## G_new.add_edge(str(nd1), str(nd2))
  692. # Gn_new.append(G_new)
  693. # print(Gn_new[1].nodes(data=True))
  694. # print(Gn_new[1].edges(data=True))
  695. # print(Gn_new[1])
  696. # filename = '/media/ljia/DATA/research-repo/codes/others/gedlib/tests_linlin/generated_datsets/monoterpenoides/gxl/monoterpenoides'
  697. # xparams = {'method': 'gedlib'}
  698. # saveDataset(Gn, y, gformat='gxl', group='xml', filename=filename, xparams=xparams)
  699. # save dataset.
  700. # ds = {'name': 'MUTAG', 'dataset': '../../datasets/MUTAG/MUTAG.mat',
  701. # 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb
  702. # Gn, y = loadDataset(ds['dataset'], extra_params=ds['extra_params'])
  703. # saveDataset(Gn, y, group='xml', filename='temp/temp')
  704. # test - new way to add labels and attributes.
  705. # dataset = '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt'
  706. # filename = '../../datasets/Fingerprint/Fingerprint_A.txt'
  707. # dataset = '../../datasets/Letter-med/Letter-med_A.txt'
  708. # dataset = '../../datasets/AIDS/AIDS_A.txt'
  709. # dataset = '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'
  710. # Gn, targets, label_names = load_dataset(filename)
  711. pass

A Python package for graph kernels, graph edit distances and graph pre-image problem.