|
@@ -0,0 +1,22 @@ |
|
|
|
|
|
// |
|
|
|
|
|
// svm_model |
|
|
|
|
|
// |
|
|
|
|
|
package libsvm; |
|
|
|
|
|
public class svm_model implements java.io.Serializable |
|
|
|
|
|
{ |
|
|
|
|
|
public svm_parameter param; // parameter |
|
|
|
|
|
public int nr_class; // number of classes, = 2 in regression/one class svm |
|
|
|
|
|
public int l; // total #SV |
|
|
|
|
|
public svm_node[][] SV; // SVs (SV[l]) |
|
|
|
|
|
public double[][] sv_coef; // coefficients for SVs in decision functions (sv_coef[k-1][l]) |
|
|
|
|
|
public double[] rho; // constants in decision functions (rho[k*(k-1)/2]) |
|
|
|
|
|
public double[] probA; // pariwise probability information |
|
|
|
|
|
public double[] probB; |
|
|
|
|
|
public int[] sv_indices; // sv_indices[0,...,nSV-1] are values in [1,...,num_traning_data] to indicate SVs in the training set |
|
|
|
|
|
|
|
|
|
|
|
// for classification only |
|
|
|
|
|
|
|
|
|
|
|
public int[] label; // label of each class (label[k]) |
|
|
|
|
|
public int[] nSV; // number of SVs for each class (nSV[k]) |
|
|
|
|
|
// nSV[0] + nSV[1] + ... + nSV[k-1] = l |
|
|
|
|
|
}; |