Browse Source

New translations structural_sp.py (Chinese Simplified)

l10n_v0.2.x
linlin 4 years ago
parent
commit
083db182bc
1 changed files with 405 additions and 0 deletions
  1. +405
    -0
      lang/zh/gklearn/kernels/structural_sp.py

+ 405
- 0
lang/zh/gklearn/kernels/structural_sp.py View File

@@ -0,0 +1,405 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 30 11:59:57 2020

@author: ljia

@references:

[1] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For
Measuring Similarity of Shapes. InESANN 2007 Apr 25 (pp. 355-360).
"""
import sys
from itertools import product
# from functools import partial
from multiprocessing import Pool
from tqdm import tqdm
# import networkx as nx
import numpy as np
from gklearn.utils.parallel import parallel_gm, parallel_me
from gklearn.utils.utils import get_shortest_paths
from gklearn.kernels import GraphKernel


class StructuralSP(GraphKernel):
def __init__(self, **kwargs):
GraphKernel.__init__(self)
self.__node_labels = kwargs.get('node_labels', [])
self.__edge_labels = kwargs.get('edge_labels', [])
self.__node_attrs = kwargs.get('node_attrs', [])
self.__edge_attrs = kwargs.get('edge_attrs', [])
self.__edge_weight = kwargs.get('edge_weight', None)
self.__node_kernels = kwargs.get('node_kernels', None)
self.__edge_kernels = kwargs.get('edge_kernels', None)
self.__compute_method = kwargs.get('compute_method', 'naive')
self.__ds_infos = kwargs.get('ds_infos', {})


def _compute_gm_series(self):
# get shortest paths of each graph in the graphs.
splist = []
if self._verbose >= 2:
iterator = tqdm(self._graphs, desc='getting sp graphs', file=sys.stdout)
else:
iterator = self._graphs
if self.__compute_method == 'trie':
for g in iterator:
splist.append(self.__get_sps_as_trie(g))
else:
for g in iterator:
splist.append(get_shortest_paths(g, self.__edge_weight, self.__ds_infos['directed']))
# compute Gram matrix.
gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
from itertools import combinations_with_replacement
itr = combinations_with_replacement(range(0, len(self._graphs)), 2)
if self._verbose >= 2:
iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout)
else:
iterator = itr
if self.__compute_method == 'trie':
for i, j in iterator:
kernel = self.__ssp_do_trie(self._graphs[i], self._graphs[j], splist[i], splist[j])
gram_matrix[i][j] = kernel
gram_matrix[j][i] = kernel
else:
for i, j in iterator:
kernel = self.__ssp_do_naive(self._graphs[i], self._graphs[j], splist[i], splist[j])
# if(kernel > 1):
# print("error here ")
gram_matrix[i][j] = kernel
gram_matrix[j][i] = kernel
return gram_matrix
def _compute_gm_imap_unordered(self):
# get shortest paths of each graph in the graphs.
splist = [None] * len(self._graphs)
pool = Pool(self._n_jobs)
itr = zip(self._graphs, range(0, len(self._graphs)))
if len(self._graphs) < 100 * self._n_jobs:
chunksize = int(len(self._graphs) / self._n_jobs) + 1
else:
chunksize = 100
# get shortest path graphs of self._graphs
if self.__compute_method == 'trie':
get_sps_fun = self._wrapper_get_sps_trie
else:
get_sps_fun = self._wrapper_get_sps_naive
if self.verbose >= 2:
iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize),
desc='getting shortest paths', file=sys.stdout)
else:
iterator = pool.imap_unordered(get_sps_fun, itr, chunksize)
for i, sp in iterator:
splist[i] = sp
pool.close()
pool.join()
# compute Gram matrix.
gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))

def init_worker(spl_toshare, gs_toshare):
global G_spl, G_gs
G_spl = spl_toshare
G_gs = gs_toshare
if self.__compute_method == 'trie':
do_fun = self.__wrapper_ssp_do_trie
else:
do_fun = self._wrapper_ssp_do_naive
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker,
glbv=(splist, self._graphs), n_jobs=self._n_jobs, verbose=self._verbose)
return gram_matrix
def _compute_kernel_list_series(self, g1, g_list):
# get shortest paths of g1 and each graph in g_list.
sp1 = get_shortest_paths(g1, self.__edge_weight, self.__ds_infos['directed'])
splist = []
if self._verbose >= 2:
iterator = tqdm(g_list, desc='getting sp graphs', file=sys.stdout)
else:
iterator = g_list
if self.__compute_method == 'trie':
for g in iterator:
splist.append(self.__get_sps_as_trie(g))
else:
for g in iterator:
splist.append(get_shortest_paths(g, self.__edge_weight, self.__ds_infos['directed']))
# compute kernel list.
kernel_list = [None] * len(g_list)
if self._verbose >= 2:
iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout)
else:
iterator = range(len(g_list))
if self.__compute_method == 'trie':
for i in iterator:
kernel = self.__ssp_do_trie(g1, g_list[i], sp1, splist[i])
kernel_list[i] = kernel
else:
for i in iterator:
kernel = self.__ssp_do_naive(g1, g_list[i], sp1, splist[i])
kernel_list[i] = kernel
return kernel_list
def _compute_kernel_list_imap_unordered(self, g1, g_list):
# get shortest paths of g1 and each graph in g_list.
sp1 = get_shortest_paths(g1, self.__edge_weight, self.__ds_infos['directed'])
splist = [None] * len(g_list)
pool = Pool(self._n_jobs)
itr = zip(g_list, range(0, len(g_list)))
if len(g_list) < 100 * self._n_jobs:
chunksize = int(len(g_list) / self._n_jobs) + 1
else:
chunksize = 100
# get shortest path graphs of g_list
if self.__compute_method == 'trie':
get_sps_fun = self._wrapper_get_sps_trie
else:
get_sps_fun = self._wrapper_get_sps_naive
if self.verbose >= 2:
iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize),
desc='getting shortest paths', file=sys.stdout)
else:
iterator = pool.imap_unordered(get_sps_fun, itr, chunksize)
for i, sp in iterator:
splist[i] = sp
pool.close()
pool.join()
# compute Gram matrix.
kernel_list = [None] * len(g_list)

def init_worker(sp1_toshare, spl_toshare, g1_toshare, gl_toshare):
global G_sp1, G_spl, G_g1, G_gl
G_sp1 = sp1_toshare
G_spl = spl_toshare
G_g1 = g1_toshare
G_gl = gl_toshare
if self.__compute_method == 'trie':
do_fun = self.__wrapper_ssp_do_trie
else:
do_fun = self._wrapper_kernel_list_do
def func_assign(result, var_to_assign):
var_to_assign[result[0]] = result[1]
itr = range(len(g_list))
len_itr = len(g_list)
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr,
init_worker=init_worker, glbv=(sp1, splist, g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose)
return kernel_list
def _wrapper_kernel_list_do(self, itr):
return itr, self.__ssp_do_naive(G_g1, G_gl[itr], G_sp1, G_spl[itr])

def _compute_single_kernel_series(self, g1, g2):
sp1 = get_shortest_paths(g1, self.__edge_weight, self.__ds_infos['directed'])
sp2 = get_shortest_paths(g2, self.__edge_weight, self.__ds_infos['directed'])
if self.__compute_method == 'trie':
kernel = self.__ssp_do_trie(g1, g2, sp1, sp2)
else:
kernel = self.__ssp_do_naive(g1, g2, sp1, sp2)
return kernel
def _wrapper_get_sps_naive(self, itr_item):
g = itr_item[0]
i = itr_item[1]
return i, get_shortest_paths(g, self.__edge_weight, self.__ds_infos['directed'])
def __ssp_do_naive(self, g1, g2, spl1, spl2):
kernel = 0
# First, compute shortest path matrices, method borrowed from FCSP.
vk_dict = self.__get_all_node_kernels(g1, g2)
# Then, compute kernels between all pairs of edges, which is an idea of
# extension of FCSP. It suits sparse graphs, which is the most case we
# went though. For dense graphs, this would be slow.
ek_dict = self.__get_all_edge_kernels(g1, g2)
# compute graph kernels
if vk_dict:
if ek_dict:
for p1, p2 in product(spl1, spl2):
if len(p1) == len(p2):
kpath = vk_dict[(p1[0], p2[0])]
if kpath:
for idx in range(1, len(p1)):
kpath *= vk_dict[(p1[idx], p2[idx])] * \
ek_dict[((p1[idx-1], p1[idx]),
(p2[idx-1], p2[idx]))]
if not kpath:
break
kernel += kpath # add up kernels of all paths
else:
for p1, p2 in product(spl1, spl2):
if len(p1) == len(p2):
kpath = vk_dict[(p1[0], p2[0])]
if kpath:
for idx in range(1, len(p1)):
kpath *= vk_dict[(p1[idx], p2[idx])]
if not kpath:
break
kernel += kpath # add up kernels of all paths
else:
if ek_dict:
for p1, p2 in product(spl1, spl2):
if len(p1) == len(p2):
if len(p1) == 0:
kernel += 1
else:
kpath = 1
for idx in range(0, len(p1) - 1):
kpath *= ek_dict[((p1[idx], p1[idx+1]),
(p2[idx], p2[idx+1]))]
if not kpath:
break
kernel += kpath # add up kernels of all paths
else:
for p1, p2 in product(spl1, spl2):
if len(p1) == len(p2):
kernel += 1
try:
kernel = kernel / (len(spl1) * len(spl2)) # calculate mean average
except ZeroDivisionError:
print(spl1, spl2)
print(g1.nodes(data=True))
print(g1.edges(data=True))
raise Exception
# # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation
# # compute vertex kernel matrix
# try:
# vk_mat = np.zeros((nx.number_of_nodes(g1),
# nx.number_of_nodes(g2)))
# g1nl = enumerate(g1.nodes(data=True))
# g2nl = enumerate(g2.nodes(data=True))
# for i1, n1 in g1nl:
# for i2, n2 in g2nl:
# vk_mat[i1][i2] = kn(
# n1[1][node_label], n2[1][node_label],
# [n1[1]['attributes']], [n2[1]['attributes']])
# range1 = range(0, len(edge_w_g[i]))
# range2 = range(0, len(edge_w_g[j]))
# for i1 in range1:
# x1 = edge_x_g[i][i1]
# y1 = edge_y_g[i][i1]
# w1 = edge_w_g[i][i1]
# for i2 in range2:
# x2 = edge_x_g[j][i2]
# y2 = edge_y_g[j][i2]
# w2 = edge_w_g[j][i2]
# ke = (w1 == w2)
# if ke > 0:
# kn1 = vk_mat[x1][x2] * vk_mat[y1][y2]
# kn2 = vk_mat[x1][y2] * vk_mat[y1][x2]
# Kmatrix += kn1 + kn2
return kernel
def _wrapper_ssp_do_naive(self, itr):
i = itr[0]
j = itr[1]
return i, j, self.__ssp_do_naive(G_gs[i], G_gs[j], G_spl[i], G_spl[j])
def __get_all_node_kernels(self, g1, g2):
# compute shortest path matrices, method borrowed from FCSP.
vk_dict = {} # shortest path matrices dict
if len(self.__node_labels) > 0:
# node symb and non-synb labeled
if len(self.__node_attrs) > 0:
kn = self.__node_kernels['mix']
for n1, n2 in product(g1.nodes(data=True), g2.nodes(data=True)):
n1_labels = [n1[1][nl] for nl in self.__node_labels]
n2_labels = [n2[1][nl] for nl in self.__node_labels]
n1_attrs = [n1[1][na] for na in self.__node_attrs]
n2_attrs = [n2[1][na] for na in self.__node_attrs]
vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels, n1_attrs, n2_attrs)
# node symb labeled
else:
kn = self.__node_kernels['symb']
for n1 in g1.nodes(data=True):
for n2 in g2.nodes(data=True):
n1_labels = [n1[1][nl] for nl in self.__node_labels]
n2_labels = [n2[1][nl] for nl in self.__node_labels]
vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels)
else:
# node non-synb labeled
if len(self.__node_attrs) > 0:
kn = self.__node_kernels['nsymb']
for n1 in g1.nodes(data=True):
for n2 in g2.nodes(data=True):
n1_attrs = [n1[1][na] for na in self.__node_attrs]
n2_attrs = [n2[1][na] for na in self.__node_attrs]
vk_dict[(n1[0], n2[0])] = kn(n1_attrs, n2_attrs)
# node unlabeled
else:
pass
return vk_dict
def __get_all_edge_kernels(self, g1, g2):
# compute kernels between all pairs of edges, which is an idea of
# extension of FCSP. It suits sparse graphs, which is the most case we
# went though. For dense graphs, this would be slow.
ek_dict = {} # dict of edge kernels
if len(self.__edge_labels) > 0:
# edge symb and non-synb labeled
if len(self.__edge_attrs) > 0:
ke = self.__edge_kernels['mix']
for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
e1_labels = [e1[2][el] for el in self.__edge_labels]
e2_labels = [e2[2][el] for el in self.__edge_labels]
e1_attrs = [e1[2][ea] for ea in self.__edge_attrs]
e2_attrs = [e2[2][ea] for ea in self.__edge_attrs]
ek_temp = ke(e1_labels, e2_labels, e1_attrs, e2_attrs)
ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
# edge symb labeled
else:
ke = self.__edge_kernels['symb']
for e1 in g1.edges(data=True):
for e2 in g2.edges(data=True):
e1_labels = [e1[2][el] for el in self.__edge_labels]
e2_labels = [e2[2][el] for el in self.__edge_labels]
ek_temp = ke(e1_labels, e2_labels)
ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
else:
# edge non-synb labeled
if len(self.__edge_attrs) > 0:
ke = self.__edge_kernels['nsymb']
for e1 in g1.edges(data=True):
for e2 in g2.edges(data=True):
e1_attrs = [e1[2][ea] for ea in self.__edge_attrs]
e2_attrs = [e2[2][ea] for ea in self.__edge_attrs]
ek_temp = ke(e1_attrs, e2_attrs)
ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
# edge unlabeled
else:
pass
return ek_dict

Loading…
Cancel
Save