|
@@ -0,0 +1,405 @@ |
|
|
|
|
|
#!/usr/bin/env python3 |
|
|
|
|
|
# -*- coding: utf-8 -*- |
|
|
|
|
|
""" |
|
|
|
|
|
Created on Mon Mar 30 11:59:57 2020 |
|
|
|
|
|
|
|
|
|
|
|
@author: ljia |
|
|
|
|
|
|
|
|
|
|
|
@references: |
|
|
|
|
|
|
|
|
|
|
|
[1] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For |
|
|
|
|
|
Measuring Similarity of Shapes. InESANN 2007 Apr 25 (pp. 355-360). |
|
|
|
|
|
""" |
|
|
|
|
|
import sys |
|
|
|
|
|
from itertools import product |
|
|
|
|
|
# from functools import partial |
|
|
|
|
|
from multiprocessing import Pool |
|
|
|
|
|
from tqdm import tqdm |
|
|
|
|
|
# import networkx as nx |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
from gklearn.utils.parallel import parallel_gm, parallel_me |
|
|
|
|
|
from gklearn.utils.utils import get_shortest_paths |
|
|
|
|
|
from gklearn.kernels import GraphKernel |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class StructuralSP(GraphKernel): |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, **kwargs): |
|
|
|
|
|
GraphKernel.__init__(self) |
|
|
|
|
|
self.__node_labels = kwargs.get('node_labels', []) |
|
|
|
|
|
self.__edge_labels = kwargs.get('edge_labels', []) |
|
|
|
|
|
self.__node_attrs = kwargs.get('node_attrs', []) |
|
|
|
|
|
self.__edge_attrs = kwargs.get('edge_attrs', []) |
|
|
|
|
|
self.__edge_weight = kwargs.get('edge_weight', None) |
|
|
|
|
|
self.__node_kernels = kwargs.get('node_kernels', None) |
|
|
|
|
|
self.__edge_kernels = kwargs.get('edge_kernels', None) |
|
|
|
|
|
self.__compute_method = kwargs.get('compute_method', 'naive') |
|
|
|
|
|
self.__ds_infos = kwargs.get('ds_infos', {}) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _compute_gm_series(self): |
|
|
|
|
|
# get shortest paths of each graph in the graphs. |
|
|
|
|
|
splist = [] |
|
|
|
|
|
if self._verbose >= 2: |
|
|
|
|
|
iterator = tqdm(self._graphs, desc='getting sp graphs', file=sys.stdout) |
|
|
|
|
|
else: |
|
|
|
|
|
iterator = self._graphs |
|
|
|
|
|
if self.__compute_method == 'trie': |
|
|
|
|
|
for g in iterator: |
|
|
|
|
|
splist.append(self.__get_sps_as_trie(g)) |
|
|
|
|
|
else: |
|
|
|
|
|
for g in iterator: |
|
|
|
|
|
splist.append(get_shortest_paths(g, self.__edge_weight, self.__ds_infos['directed'])) |
|
|
|
|
|
|
|
|
|
|
|
# compute Gram matrix. |
|
|
|
|
|
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) |
|
|
|
|
|
|
|
|
|
|
|
from itertools import combinations_with_replacement |
|
|
|
|
|
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) |
|
|
|
|
|
if self._verbose >= 2: |
|
|
|
|
|
iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout) |
|
|
|
|
|
else: |
|
|
|
|
|
iterator = itr |
|
|
|
|
|
if self.__compute_method == 'trie': |
|
|
|
|
|
for i, j in iterator: |
|
|
|
|
|
kernel = self.__ssp_do_trie(self._graphs[i], self._graphs[j], splist[i], splist[j]) |
|
|
|
|
|
gram_matrix[i][j] = kernel |
|
|
|
|
|
gram_matrix[j][i] = kernel |
|
|
|
|
|
else: |
|
|
|
|
|
for i, j in iterator: |
|
|
|
|
|
kernel = self.__ssp_do_naive(self._graphs[i], self._graphs[j], splist[i], splist[j]) |
|
|
|
|
|
# if(kernel > 1): |
|
|
|
|
|
# print("error here ") |
|
|
|
|
|
gram_matrix[i][j] = kernel |
|
|
|
|
|
gram_matrix[j][i] = kernel |
|
|
|
|
|
|
|
|
|
|
|
return gram_matrix |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _compute_gm_imap_unordered(self): |
|
|
|
|
|
# get shortest paths of each graph in the graphs. |
|
|
|
|
|
splist = [None] * len(self._graphs) |
|
|
|
|
|
pool = Pool(self._n_jobs) |
|
|
|
|
|
itr = zip(self._graphs, range(0, len(self._graphs))) |
|
|
|
|
|
if len(self._graphs) < 100 * self._n_jobs: |
|
|
|
|
|
chunksize = int(len(self._graphs) / self._n_jobs) + 1 |
|
|
|
|
|
else: |
|
|
|
|
|
chunksize = 100 |
|
|
|
|
|
# get shortest path graphs of self._graphs |
|
|
|
|
|
if self.__compute_method == 'trie': |
|
|
|
|
|
get_sps_fun = self._wrapper_get_sps_trie |
|
|
|
|
|
else: |
|
|
|
|
|
get_sps_fun = self._wrapper_get_sps_naive |
|
|
|
|
|
if self.verbose >= 2: |
|
|
|
|
|
iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize), |
|
|
|
|
|
desc='getting shortest paths', file=sys.stdout) |
|
|
|
|
|
else: |
|
|
|
|
|
iterator = pool.imap_unordered(get_sps_fun, itr, chunksize) |
|
|
|
|
|
for i, sp in iterator: |
|
|
|
|
|
splist[i] = sp |
|
|
|
|
|
pool.close() |
|
|
|
|
|
pool.join() |
|
|
|
|
|
|
|
|
|
|
|
# compute Gram matrix. |
|
|
|
|
|
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) |
|
|
|
|
|
|
|
|
|
|
|
def init_worker(spl_toshare, gs_toshare): |
|
|
|
|
|
global G_spl, G_gs |
|
|
|
|
|
G_spl = spl_toshare |
|
|
|
|
|
G_gs = gs_toshare |
|
|
|
|
|
if self.__compute_method == 'trie': |
|
|
|
|
|
do_fun = self.__wrapper_ssp_do_trie |
|
|
|
|
|
else: |
|
|
|
|
|
do_fun = self._wrapper_ssp_do_naive |
|
|
|
|
|
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, |
|
|
|
|
|
glbv=(splist, self._graphs), n_jobs=self._n_jobs, verbose=self._verbose) |
|
|
|
|
|
|
|
|
|
|
|
return gram_matrix |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _compute_kernel_list_series(self, g1, g_list): |
|
|
|
|
|
# get shortest paths of g1 and each graph in g_list. |
|
|
|
|
|
sp1 = get_shortest_paths(g1, self.__edge_weight, self.__ds_infos['directed']) |
|
|
|
|
|
splist = [] |
|
|
|
|
|
if self._verbose >= 2: |
|
|
|
|
|
iterator = tqdm(g_list, desc='getting sp graphs', file=sys.stdout) |
|
|
|
|
|
else: |
|
|
|
|
|
iterator = g_list |
|
|
|
|
|
if self.__compute_method == 'trie': |
|
|
|
|
|
for g in iterator: |
|
|
|
|
|
splist.append(self.__get_sps_as_trie(g)) |
|
|
|
|
|
else: |
|
|
|
|
|
for g in iterator: |
|
|
|
|
|
splist.append(get_shortest_paths(g, self.__edge_weight, self.__ds_infos['directed'])) |
|
|
|
|
|
|
|
|
|
|
|
# compute kernel list. |
|
|
|
|
|
kernel_list = [None] * len(g_list) |
|
|
|
|
|
if self._verbose >= 2: |
|
|
|
|
|
iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout) |
|
|
|
|
|
else: |
|
|
|
|
|
iterator = range(len(g_list)) |
|
|
|
|
|
if self.__compute_method == 'trie': |
|
|
|
|
|
for i in iterator: |
|
|
|
|
|
kernel = self.__ssp_do_trie(g1, g_list[i], sp1, splist[i]) |
|
|
|
|
|
kernel_list[i] = kernel |
|
|
|
|
|
else: |
|
|
|
|
|
for i in iterator: |
|
|
|
|
|
kernel = self.__ssp_do_naive(g1, g_list[i], sp1, splist[i]) |
|
|
|
|
|
kernel_list[i] = kernel |
|
|
|
|
|
|
|
|
|
|
|
return kernel_list |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _compute_kernel_list_imap_unordered(self, g1, g_list): |
|
|
|
|
|
# get shortest paths of g1 and each graph in g_list. |
|
|
|
|
|
sp1 = get_shortest_paths(g1, self.__edge_weight, self.__ds_infos['directed']) |
|
|
|
|
|
splist = [None] * len(g_list) |
|
|
|
|
|
pool = Pool(self._n_jobs) |
|
|
|
|
|
itr = zip(g_list, range(0, len(g_list))) |
|
|
|
|
|
if len(g_list) < 100 * self._n_jobs: |
|
|
|
|
|
chunksize = int(len(g_list) / self._n_jobs) + 1 |
|
|
|
|
|
else: |
|
|
|
|
|
chunksize = 100 |
|
|
|
|
|
# get shortest path graphs of g_list |
|
|
|
|
|
if self.__compute_method == 'trie': |
|
|
|
|
|
get_sps_fun = self._wrapper_get_sps_trie |
|
|
|
|
|
else: |
|
|
|
|
|
get_sps_fun = self._wrapper_get_sps_naive |
|
|
|
|
|
if self.verbose >= 2: |
|
|
|
|
|
iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize), |
|
|
|
|
|
desc='getting shortest paths', file=sys.stdout) |
|
|
|
|
|
else: |
|
|
|
|
|
iterator = pool.imap_unordered(get_sps_fun, itr, chunksize) |
|
|
|
|
|
for i, sp in iterator: |
|
|
|
|
|
splist[i] = sp |
|
|
|
|
|
pool.close() |
|
|
|
|
|
pool.join() |
|
|
|
|
|
|
|
|
|
|
|
# compute Gram matrix. |
|
|
|
|
|
kernel_list = [None] * len(g_list) |
|
|
|
|
|
|
|
|
|
|
|
def init_worker(sp1_toshare, spl_toshare, g1_toshare, gl_toshare): |
|
|
|
|
|
global G_sp1, G_spl, G_g1, G_gl |
|
|
|
|
|
G_sp1 = sp1_toshare |
|
|
|
|
|
G_spl = spl_toshare |
|
|
|
|
|
G_g1 = g1_toshare |
|
|
|
|
|
G_gl = gl_toshare |
|
|
|
|
|
if self.__compute_method == 'trie': |
|
|
|
|
|
do_fun = self.__wrapper_ssp_do_trie |
|
|
|
|
|
else: |
|
|
|
|
|
do_fun = self._wrapper_kernel_list_do |
|
|
|
|
|
def func_assign(result, var_to_assign): |
|
|
|
|
|
var_to_assign[result[0]] = result[1] |
|
|
|
|
|
itr = range(len(g_list)) |
|
|
|
|
|
len_itr = len(g_list) |
|
|
|
|
|
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, |
|
|
|
|
|
init_worker=init_worker, glbv=(sp1, splist, g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose) |
|
|
|
|
|
|
|
|
|
|
|
return kernel_list |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _wrapper_kernel_list_do(self, itr): |
|
|
|
|
|
return itr, self.__ssp_do_naive(G_g1, G_gl[itr], G_sp1, G_spl[itr]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _compute_single_kernel_series(self, g1, g2): |
|
|
|
|
|
sp1 = get_shortest_paths(g1, self.__edge_weight, self.__ds_infos['directed']) |
|
|
|
|
|
sp2 = get_shortest_paths(g2, self.__edge_weight, self.__ds_infos['directed']) |
|
|
|
|
|
if self.__compute_method == 'trie': |
|
|
|
|
|
kernel = self.__ssp_do_trie(g1, g2, sp1, sp2) |
|
|
|
|
|
else: |
|
|
|
|
|
kernel = self.__ssp_do_naive(g1, g2, sp1, sp2) |
|
|
|
|
|
return kernel |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _wrapper_get_sps_naive(self, itr_item): |
|
|
|
|
|
g = itr_item[0] |
|
|
|
|
|
i = itr_item[1] |
|
|
|
|
|
return i, get_shortest_paths(g, self.__edge_weight, self.__ds_infos['directed']) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __ssp_do_naive(self, g1, g2, spl1, spl2): |
|
|
|
|
|
|
|
|
|
|
|
kernel = 0 |
|
|
|
|
|
|
|
|
|
|
|
# First, compute shortest path matrices, method borrowed from FCSP. |
|
|
|
|
|
vk_dict = self.__get_all_node_kernels(g1, g2) |
|
|
|
|
|
# Then, compute kernels between all pairs of edges, which is an idea of |
|
|
|
|
|
# extension of FCSP. It suits sparse graphs, which is the most case we |
|
|
|
|
|
# went though. For dense graphs, this would be slow. |
|
|
|
|
|
ek_dict = self.__get_all_edge_kernels(g1, g2) |
|
|
|
|
|
|
|
|
|
|
|
# compute graph kernels |
|
|
|
|
|
if vk_dict: |
|
|
|
|
|
if ek_dict: |
|
|
|
|
|
for p1, p2 in product(spl1, spl2): |
|
|
|
|
|
if len(p1) == len(p2): |
|
|
|
|
|
kpath = vk_dict[(p1[0], p2[0])] |
|
|
|
|
|
if kpath: |
|
|
|
|
|
for idx in range(1, len(p1)): |
|
|
|
|
|
kpath *= vk_dict[(p1[idx], p2[idx])] * \ |
|
|
|
|
|
ek_dict[((p1[idx-1], p1[idx]), |
|
|
|
|
|
(p2[idx-1], p2[idx]))] |
|
|
|
|
|
if not kpath: |
|
|
|
|
|
break |
|
|
|
|
|
kernel += kpath # add up kernels of all paths |
|
|
|
|
|
else: |
|
|
|
|
|
for p1, p2 in product(spl1, spl2): |
|
|
|
|
|
if len(p1) == len(p2): |
|
|
|
|
|
kpath = vk_dict[(p1[0], p2[0])] |
|
|
|
|
|
if kpath: |
|
|
|
|
|
for idx in range(1, len(p1)): |
|
|
|
|
|
kpath *= vk_dict[(p1[idx], p2[idx])] |
|
|
|
|
|
if not kpath: |
|
|
|
|
|
break |
|
|
|
|
|
kernel += kpath # add up kernels of all paths |
|
|
|
|
|
else: |
|
|
|
|
|
if ek_dict: |
|
|
|
|
|
for p1, p2 in product(spl1, spl2): |
|
|
|
|
|
if len(p1) == len(p2): |
|
|
|
|
|
if len(p1) == 0: |
|
|
|
|
|
kernel += 1 |
|
|
|
|
|
else: |
|
|
|
|
|
kpath = 1 |
|
|
|
|
|
for idx in range(0, len(p1) - 1): |
|
|
|
|
|
kpath *= ek_dict[((p1[idx], p1[idx+1]), |
|
|
|
|
|
(p2[idx], p2[idx+1]))] |
|
|
|
|
|
if not kpath: |
|
|
|
|
|
break |
|
|
|
|
|
kernel += kpath # add up kernels of all paths |
|
|
|
|
|
else: |
|
|
|
|
|
for p1, p2 in product(spl1, spl2): |
|
|
|
|
|
if len(p1) == len(p2): |
|
|
|
|
|
kernel += 1 |
|
|
|
|
|
try: |
|
|
|
|
|
kernel = kernel / (len(spl1) * len(spl2)) # calculate mean average |
|
|
|
|
|
except ZeroDivisionError: |
|
|
|
|
|
print(spl1, spl2) |
|
|
|
|
|
print(g1.nodes(data=True)) |
|
|
|
|
|
print(g1.edges(data=True)) |
|
|
|
|
|
raise Exception |
|
|
|
|
|
|
|
|
|
|
|
# # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation |
|
|
|
|
|
# # compute vertex kernel matrix |
|
|
|
|
|
# try: |
|
|
|
|
|
# vk_mat = np.zeros((nx.number_of_nodes(g1), |
|
|
|
|
|
# nx.number_of_nodes(g2))) |
|
|
|
|
|
# g1nl = enumerate(g1.nodes(data=True)) |
|
|
|
|
|
# g2nl = enumerate(g2.nodes(data=True)) |
|
|
|
|
|
# for i1, n1 in g1nl: |
|
|
|
|
|
# for i2, n2 in g2nl: |
|
|
|
|
|
# vk_mat[i1][i2] = kn( |
|
|
|
|
|
# n1[1][node_label], n2[1][node_label], |
|
|
|
|
|
# [n1[1]['attributes']], [n2[1]['attributes']]) |
|
|
|
|
|
|
|
|
|
|
|
# range1 = range(0, len(edge_w_g[i])) |
|
|
|
|
|
# range2 = range(0, len(edge_w_g[j])) |
|
|
|
|
|
# for i1 in range1: |
|
|
|
|
|
# x1 = edge_x_g[i][i1] |
|
|
|
|
|
# y1 = edge_y_g[i][i1] |
|
|
|
|
|
# w1 = edge_w_g[i][i1] |
|
|
|
|
|
# for i2 in range2: |
|
|
|
|
|
# x2 = edge_x_g[j][i2] |
|
|
|
|
|
# y2 = edge_y_g[j][i2] |
|
|
|
|
|
# w2 = edge_w_g[j][i2] |
|
|
|
|
|
# ke = (w1 == w2) |
|
|
|
|
|
# if ke > 0: |
|
|
|
|
|
# kn1 = vk_mat[x1][x2] * vk_mat[y1][y2] |
|
|
|
|
|
# kn2 = vk_mat[x1][y2] * vk_mat[y1][x2] |
|
|
|
|
|
# Kmatrix += kn1 + kn2 |
|
|
|
|
|
return kernel |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _wrapper_ssp_do_naive(self, itr): |
|
|
|
|
|
i = itr[0] |
|
|
|
|
|
j = itr[1] |
|
|
|
|
|
return i, j, self.__ssp_do_naive(G_gs[i], G_gs[j], G_spl[i], G_spl[j]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __get_all_node_kernels(self, g1, g2): |
|
|
|
|
|
# compute shortest path matrices, method borrowed from FCSP. |
|
|
|
|
|
vk_dict = {} # shortest path matrices dict |
|
|
|
|
|
if len(self.__node_labels) > 0: |
|
|
|
|
|
# node symb and non-synb labeled |
|
|
|
|
|
if len(self.__node_attrs) > 0: |
|
|
|
|
|
kn = self.__node_kernels['mix'] |
|
|
|
|
|
for n1, n2 in product(g1.nodes(data=True), g2.nodes(data=True)): |
|
|
|
|
|
n1_labels = [n1[1][nl] for nl in self.__node_labels] |
|
|
|
|
|
n2_labels = [n2[1][nl] for nl in self.__node_labels] |
|
|
|
|
|
n1_attrs = [n1[1][na] for na in self.__node_attrs] |
|
|
|
|
|
n2_attrs = [n2[1][na] for na in self.__node_attrs] |
|
|
|
|
|
vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels, n1_attrs, n2_attrs) |
|
|
|
|
|
# node symb labeled |
|
|
|
|
|
else: |
|
|
|
|
|
kn = self.__node_kernels['symb'] |
|
|
|
|
|
for n1 in g1.nodes(data=True): |
|
|
|
|
|
for n2 in g2.nodes(data=True): |
|
|
|
|
|
n1_labels = [n1[1][nl] for nl in self.__node_labels] |
|
|
|
|
|
n2_labels = [n2[1][nl] for nl in self.__node_labels] |
|
|
|
|
|
vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels) |
|
|
|
|
|
else: |
|
|
|
|
|
# node non-synb labeled |
|
|
|
|
|
if len(self.__node_attrs) > 0: |
|
|
|
|
|
kn = self.__node_kernels['nsymb'] |
|
|
|
|
|
for n1 in g1.nodes(data=True): |
|
|
|
|
|
for n2 in g2.nodes(data=True): |
|
|
|
|
|
n1_attrs = [n1[1][na] for na in self.__node_attrs] |
|
|
|
|
|
n2_attrs = [n2[1][na] for na in self.__node_attrs] |
|
|
|
|
|
vk_dict[(n1[0], n2[0])] = kn(n1_attrs, n2_attrs) |
|
|
|
|
|
# node unlabeled |
|
|
|
|
|
else: |
|
|
|
|
|
pass |
|
|
|
|
|
|
|
|
|
|
|
return vk_dict |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __get_all_edge_kernels(self, g1, g2): |
|
|
|
|
|
# compute kernels between all pairs of edges, which is an idea of |
|
|
|
|
|
# extension of FCSP. It suits sparse graphs, which is the most case we |
|
|
|
|
|
# went though. For dense graphs, this would be slow. |
|
|
|
|
|
ek_dict = {} # dict of edge kernels |
|
|
|
|
|
if len(self.__edge_labels) > 0: |
|
|
|
|
|
# edge symb and non-synb labeled |
|
|
|
|
|
if len(self.__edge_attrs) > 0: |
|
|
|
|
|
ke = self.__edge_kernels['mix'] |
|
|
|
|
|
for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): |
|
|
|
|
|
e1_labels = [e1[2][el] for el in self.__edge_labels] |
|
|
|
|
|
e2_labels = [e2[2][el] for el in self.__edge_labels] |
|
|
|
|
|
e1_attrs = [e1[2][ea] for ea in self.__edge_attrs] |
|
|
|
|
|
e2_attrs = [e2[2][ea] for ea in self.__edge_attrs] |
|
|
|
|
|
ek_temp = ke(e1_labels, e2_labels, e1_attrs, e2_attrs) |
|
|
|
|
|
ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp |
|
|
|
|
|
ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp |
|
|
|
|
|
ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp |
|
|
|
|
|
ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp |
|
|
|
|
|
# edge symb labeled |
|
|
|
|
|
else: |
|
|
|
|
|
ke = self.__edge_kernels['symb'] |
|
|
|
|
|
for e1 in g1.edges(data=True): |
|
|
|
|
|
for e2 in g2.edges(data=True): |
|
|
|
|
|
e1_labels = [e1[2][el] for el in self.__edge_labels] |
|
|
|
|
|
e2_labels = [e2[2][el] for el in self.__edge_labels] |
|
|
|
|
|
ek_temp = ke(e1_labels, e2_labels) |
|
|
|
|
|
ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp |
|
|
|
|
|
ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp |
|
|
|
|
|
ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp |
|
|
|
|
|
ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp |
|
|
|
|
|
else: |
|
|
|
|
|
# edge non-synb labeled |
|
|
|
|
|
if len(self.__edge_attrs) > 0: |
|
|
|
|
|
ke = self.__edge_kernels['nsymb'] |
|
|
|
|
|
for e1 in g1.edges(data=True): |
|
|
|
|
|
for e2 in g2.edges(data=True): |
|
|
|
|
|
e1_attrs = [e1[2][ea] for ea in self.__edge_attrs] |
|
|
|
|
|
e2_attrs = [e2[2][ea] for ea in self.__edge_attrs] |
|
|
|
|
|
ek_temp = ke(e1_attrs, e2_attrs) |
|
|
|
|
|
ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp |
|
|
|
|
|
ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp |
|
|
|
|
|
ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp |
|
|
|
|
|
ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp |
|
|
|
|
|
# edge unlabeled |
|
|
|
|
|
else: |
|
|
|
|
|
pass |
|
|
|
|
|
|
|
|
|
|
|
return ek_dict |