diff --git a/lang/fr/gklearn/gedlib/lib/libsvm.3.22/tools/easy.py b/lang/fr/gklearn/gedlib/lib/libsvm.3.22/tools/easy.py new file mode 100644 index 0000000..9cf4362 --- /dev/null +++ b/lang/fr/gklearn/gedlib/lib/libsvm.3.22/tools/easy.py @@ -0,0 +1,79 @@ +#!/usr/bin/env python + +import sys +import os +from subprocess import * + +if len(sys.argv) <= 1: + print('Usage: {0} training_file [testing_file]'.format(sys.argv[0])) + raise SystemExit + +# svm, grid, and gnuplot executable files + +is_win32 = (sys.platform == 'win32') +if not is_win32: + svmscale_exe = "../svm-scale" + svmtrain_exe = "../svm-train" + svmpredict_exe = "../svm-predict" + grid_py = "./grid.py" + gnuplot_exe = "/usr/bin/gnuplot" +else: + # example for windows + svmscale_exe = r"..\windows\svm-scale.exe" + svmtrain_exe = r"..\windows\svm-train.exe" + svmpredict_exe = r"..\windows\svm-predict.exe" + gnuplot_exe = r"c:\tmp\gnuplot\binary\pgnuplot.exe" + grid_py = r".\grid.py" + +assert os.path.exists(svmscale_exe),"svm-scale executable not found" +assert os.path.exists(svmtrain_exe),"svm-train executable not found" +assert os.path.exists(svmpredict_exe),"svm-predict executable not found" +assert os.path.exists(gnuplot_exe),"gnuplot executable not found" +assert os.path.exists(grid_py),"grid.py not found" + +train_pathname = sys.argv[1] +assert os.path.exists(train_pathname),"training file not found" +file_name = os.path.split(train_pathname)[1] +scaled_file = file_name + ".scale" +model_file = file_name + ".model" +range_file = file_name + ".range" + +if len(sys.argv) > 2: + test_pathname = sys.argv[2] + file_name = os.path.split(test_pathname)[1] + assert os.path.exists(test_pathname),"testing file not found" + scaled_test_file = file_name + ".scale" + predict_test_file = file_name + ".predict" + +cmd = '{0} -s "{1}" "{2}" > "{3}"'.format(svmscale_exe, range_file, train_pathname, scaled_file) +print('Scaling training data...') +Popen(cmd, shell = True, stdout = PIPE).communicate() + +cmd = '{0} -svmtrain "{1}" -gnuplot "{2}" "{3}"'.format(grid_py, svmtrain_exe, gnuplot_exe, scaled_file) +print('Cross validation...') +f = Popen(cmd, shell = True, stdout = PIPE).stdout + +line = '' +while True: + last_line = line + line = f.readline() + if not line: break +c,g,rate = map(float,last_line.split()) + +print('Best c={0}, g={1} CV rate={2}'.format(c,g,rate)) + +cmd = '{0} -c {1} -g {2} "{3}" "{4}"'.format(svmtrain_exe,c,g,scaled_file,model_file) +print('Training...') +Popen(cmd, shell = True, stdout = PIPE).communicate() + +print('Output model: {0}'.format(model_file)) +if len(sys.argv) > 2: + cmd = '{0} -r "{1}" "{2}" > "{3}"'.format(svmscale_exe, range_file, test_pathname, scaled_test_file) + print('Scaling testing data...') + Popen(cmd, shell = True, stdout = PIPE).communicate() + + cmd = '{0} "{1}" "{2}" "{3}"'.format(svmpredict_exe, scaled_test_file, model_file, predict_test_file) + print('Testing...') + Popen(cmd, shell = True).communicate() + + print('Output prediction: {0}'.format(predict_test_file))