Browse Source

New translations structural_sp.py (French)

l10n_v0.2.x
linlin 4 years ago
parent
commit
0cce9da73d
1 changed files with 6 additions and 39 deletions
  1. +6
    -39
      lang/fr/gklearn/kernels/structural_sp.py

+ 6
- 39
lang/fr/gklearn/kernels/structural_sp.py View File

@@ -18,7 +18,7 @@ from tqdm import tqdm
# import networkx as nx
import numpy as np
from gklearn.utils.parallel import parallel_gm, parallel_me
from gklearn.utils.utils import get_shortest_paths
from gklearn.utils.utils import get_shortest_paths, compute_vertex_kernels
from gklearn.kernels import GraphKernel


@@ -57,7 +57,7 @@ class StructuralSP(GraphKernel):
from itertools import combinations_with_replacement
itr = combinations_with_replacement(range(0, len(self._graphs)), 2)
if self._verbose >= 2:
iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout)
iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout)
else:
iterator = itr
if self.__compute_method == 'trie':
@@ -135,7 +135,7 @@ class StructuralSP(GraphKernel):
# compute kernel list.
kernel_list = [None] * len(g_list)
if self._verbose >= 2:
iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout)
iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout)
else:
iterator = range(len(g_list))
if self.__compute_method == 'trie':
@@ -193,7 +193,7 @@ class StructuralSP(GraphKernel):
itr = range(len(g_list))
len_itr = len(g_list)
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr,
init_worker=init_worker, glbv=(sp1, splist, g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose)
init_worker=init_worker, glbv=(sp1, splist, g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose)
return kernel_list
@@ -273,7 +273,7 @@ class StructuralSP(GraphKernel):
if len(p1) == len(p2):
kernel += 1
try:
kernel = kernel / (len(spl1) * len(spl2)) # calculate mean average
kernel = kernel / (len(spl1) * len(spl2)) # Compute mean average
except ZeroDivisionError:
print(spl1, spl2)
print(g1.nodes(data=True))
@@ -318,40 +318,7 @@ class StructuralSP(GraphKernel):
def __get_all_node_kernels(self, g1, g2):
# compute shortest path matrices, method borrowed from FCSP.
vk_dict = {} # shortest path matrices dict
if len(self.__node_labels) > 0:
# node symb and non-synb labeled
if len(self.__node_attrs) > 0:
kn = self.__node_kernels['mix']
for n1, n2 in product(g1.nodes(data=True), g2.nodes(data=True)):
n1_labels = [n1[1][nl] for nl in self.__node_labels]
n2_labels = [n2[1][nl] for nl in self.__node_labels]
n1_attrs = [n1[1][na] for na in self.__node_attrs]
n2_attrs = [n2[1][na] for na in self.__node_attrs]
vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels, n1_attrs, n2_attrs)
# node symb labeled
else:
kn = self.__node_kernels['symb']
for n1 in g1.nodes(data=True):
for n2 in g2.nodes(data=True):
n1_labels = [n1[1][nl] for nl in self.__node_labels]
n2_labels = [n2[1][nl] for nl in self.__node_labels]
vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels)
else:
# node non-synb labeled
if len(self.__node_attrs) > 0:
kn = self.__node_kernels['nsymb']
for n1 in g1.nodes(data=True):
for n2 in g2.nodes(data=True):
n1_attrs = [n1[1][na] for na in self.__node_attrs]
n2_attrs = [n2[1][na] for na in self.__node_attrs]
vk_dict[(n1[0], n2[0])] = kn(n1_attrs, n2_attrs)
# node unlabeled
else:
pass
return vk_dict
return compute_vertex_kernels(g1, g2, self._node_kernels, node_labels=self._node_labels, node_attrs=self._node_attrs)
def __get_all_edge_kernels(self, g1, g2):


Loading…
Cancel
Save