|
@@ -0,0 +1,58 @@ |
|
|
|
|
|
# -*- coding: utf-8 -*- |
|
|
|
|
|
"""compute_graph_edit_distance.ipynb |
|
|
|
|
|
|
|
|
|
|
|
Automatically generated by Colaboratory. |
|
|
|
|
|
|
|
|
|
|
|
Original file is located at |
|
|
|
|
|
https://colab.research.google.com/drive/1Wfgn7WVuyOQQgwOvdUQBz0BzEVdp0YM3 |
|
|
|
|
|
|
|
|
|
|
|
**This script demonstrates how to compute a graph edit distance.** |
|
|
|
|
|
--- |
|
|
|
|
|
|
|
|
|
|
|
**0. Install `graphkit-learn`.** |
|
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
"""**1. Get dataset.**""" |
|
|
|
|
|
|
|
|
|
|
|
from gklearn.utils import Dataset |
|
|
|
|
|
|
|
|
|
|
|
# Predefined dataset name, use dataset "MUTAG". |
|
|
|
|
|
ds_name = 'MUTAG' |
|
|
|
|
|
|
|
|
|
|
|
# Initialize a Dataset. |
|
|
|
|
|
dataset = Dataset() |
|
|
|
|
|
# Load predefined dataset "MUTAG". |
|
|
|
|
|
dataset.load_predefined_dataset(ds_name) |
|
|
|
|
|
graph1 = dataset.graphs[0] |
|
|
|
|
|
graph2 = dataset.graphs[1] |
|
|
|
|
|
print(graph1, graph2) |
|
|
|
|
|
|
|
|
|
|
|
"""**2. Compute graph edit distance.**""" |
|
|
|
|
|
|
|
|
|
|
|
from gklearn.ged.env import GEDEnv |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ged_env = GEDEnv() # initailize GED environment. |
|
|
|
|
|
ged_env.set_edit_cost('CONSTANT', # GED cost type. |
|
|
|
|
|
edit_cost_constants=[3, 3, 1, 3, 3, 1] # edit costs. |
|
|
|
|
|
) |
|
|
|
|
|
ged_env.add_nx_graph(graph1, '') # add graph1 |
|
|
|
|
|
ged_env.add_nx_graph(graph2, '') # add graph2 |
|
|
|
|
|
listID = ged_env.get_all_graph_ids() # get list IDs of graphs |
|
|
|
|
|
ged_env.init(init_type='LAZY_WITHOUT_SHUFFLED_COPIES') # initialize GED environment. |
|
|
|
|
|
options = {'initialization_method': 'RANDOM', # or 'NODE', etc. |
|
|
|
|
|
'threads': 1 # parallel threads. |
|
|
|
|
|
} |
|
|
|
|
|
ged_env.set_method('BIPARTITE', # GED method. |
|
|
|
|
|
options # options for GED method. |
|
|
|
|
|
) |
|
|
|
|
|
ged_env.init_method() # initialize GED method. |
|
|
|
|
|
|
|
|
|
|
|
ged_env.run_method(listID[0], listID[1]) # run. |
|
|
|
|
|
|
|
|
|
|
|
pi_forward = ged_env.get_forward_map(listID[0], listID[1]) # forward map. |
|
|
|
|
|
pi_backward = ged_env.get_backward_map(listID[0], listID[1]) # backward map. |
|
|
|
|
|
dis = ged_env.get_upper_bound(listID[0], listID[1]) # GED bewteen two graphs. |
|
|
|
|
|
print(pi_forward) |
|
|
|
|
|
print(pi_backward) |
|
|
|
|
|
print(dis) |