|
@@ -0,0 +1,330 @@ |
|
|
|
|
|
#!/usr/bin/env python |
|
|
|
|
|
|
|
|
|
|
|
from ctypes import * |
|
|
|
|
|
from ctypes.util import find_library |
|
|
|
|
|
from os import path |
|
|
|
|
|
import sys |
|
|
|
|
|
|
|
|
|
|
|
if sys.version_info[0] >= 3: |
|
|
|
|
|
xrange = range |
|
|
|
|
|
|
|
|
|
|
|
__all__ = ['libsvm', 'svm_problem', 'svm_parameter', |
|
|
|
|
|
'toPyModel', 'gen_svm_nodearray', 'print_null', 'svm_node', 'C_SVC', |
|
|
|
|
|
'EPSILON_SVR', 'LINEAR', 'NU_SVC', 'NU_SVR', 'ONE_CLASS', |
|
|
|
|
|
'POLY', 'PRECOMPUTED', 'PRINT_STRING_FUN', 'RBF', |
|
|
|
|
|
'SIGMOID', 'c_double', 'svm_model'] |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
|
|
|
dirname = path.dirname(path.abspath(__file__)) |
|
|
|
|
|
if sys.platform == 'win32': |
|
|
|
|
|
libsvm = CDLL(path.join(dirname, r'..\windows\libsvm.dll')) |
|
|
|
|
|
else: |
|
|
|
|
|
libsvm = CDLL(path.join(dirname, '../libsvm.so.2')) |
|
|
|
|
|
except: |
|
|
|
|
|
# For unix the prefix 'lib' is not considered. |
|
|
|
|
|
if find_library('svm'): |
|
|
|
|
|
libsvm = CDLL(find_library('svm')) |
|
|
|
|
|
elif find_library('libsvm'): |
|
|
|
|
|
libsvm = CDLL(find_library('libsvm')) |
|
|
|
|
|
else: |
|
|
|
|
|
raise Exception('LIBSVM library not found.') |
|
|
|
|
|
|
|
|
|
|
|
C_SVC = 0 |
|
|
|
|
|
NU_SVC = 1 |
|
|
|
|
|
ONE_CLASS = 2 |
|
|
|
|
|
EPSILON_SVR = 3 |
|
|
|
|
|
NU_SVR = 4 |
|
|
|
|
|
|
|
|
|
|
|
LINEAR = 0 |
|
|
|
|
|
POLY = 1 |
|
|
|
|
|
RBF = 2 |
|
|
|
|
|
SIGMOID = 3 |
|
|
|
|
|
PRECOMPUTED = 4 |
|
|
|
|
|
|
|
|
|
|
|
PRINT_STRING_FUN = CFUNCTYPE(None, c_char_p) |
|
|
|
|
|
def print_null(s): |
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
def genFields(names, types): |
|
|
|
|
|
return list(zip(names, types)) |
|
|
|
|
|
|
|
|
|
|
|
def fillprototype(f, restype, argtypes): |
|
|
|
|
|
f.restype = restype |
|
|
|
|
|
f.argtypes = argtypes |
|
|
|
|
|
|
|
|
|
|
|
class svm_node(Structure): |
|
|
|
|
|
_names = ["index", "value"] |
|
|
|
|
|
_types = [c_int, c_double] |
|
|
|
|
|
_fields_ = genFields(_names, _types) |
|
|
|
|
|
|
|
|
|
|
|
def __str__(self): |
|
|
|
|
|
return '%d:%g' % (self.index, self.value) |
|
|
|
|
|
|
|
|
|
|
|
def gen_svm_nodearray(xi, feature_max=None, isKernel=None): |
|
|
|
|
|
if isinstance(xi, dict): |
|
|
|
|
|
index_range = xi.keys() |
|
|
|
|
|
elif isinstance(xi, (list, tuple)): |
|
|
|
|
|
if not isKernel: |
|
|
|
|
|
xi = [0] + xi # idx should start from 1 |
|
|
|
|
|
index_range = range(len(xi)) |
|
|
|
|
|
else: |
|
|
|
|
|
raise TypeError('xi should be a dictionary, list or tuple') |
|
|
|
|
|
|
|
|
|
|
|
if feature_max: |
|
|
|
|
|
assert(isinstance(feature_max, int)) |
|
|
|
|
|
index_range = filter(lambda j: j <= feature_max, index_range) |
|
|
|
|
|
if not isKernel: |
|
|
|
|
|
index_range = filter(lambda j:xi[j] != 0, index_range) |
|
|
|
|
|
|
|
|
|
|
|
index_range = sorted(index_range) |
|
|
|
|
|
ret = (svm_node * (len(index_range)+1))() |
|
|
|
|
|
ret[-1].index = -1 |
|
|
|
|
|
for idx, j in enumerate(index_range): |
|
|
|
|
|
ret[idx].index = j |
|
|
|
|
|
ret[idx].value = xi[j] |
|
|
|
|
|
max_idx = 0 |
|
|
|
|
|
if index_range: |
|
|
|
|
|
max_idx = index_range[-1] |
|
|
|
|
|
return ret, max_idx |
|
|
|
|
|
|
|
|
|
|
|
class svm_problem(Structure): |
|
|
|
|
|
_names = ["l", "y", "x"] |
|
|
|
|
|
_types = [c_int, POINTER(c_double), POINTER(POINTER(svm_node))] |
|
|
|
|
|
_fields_ = genFields(_names, _types) |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, y, x, isKernel=None): |
|
|
|
|
|
if len(y) != len(x): |
|
|
|
|
|
raise ValueError("len(y) != len(x)") |
|
|
|
|
|
self.l = l = len(y) |
|
|
|
|
|
|
|
|
|
|
|
max_idx = 0 |
|
|
|
|
|
x_space = self.x_space = [] |
|
|
|
|
|
for i, xi in enumerate(x): |
|
|
|
|
|
tmp_xi, tmp_idx = gen_svm_nodearray(xi,isKernel=isKernel) |
|
|
|
|
|
x_space += [tmp_xi] |
|
|
|
|
|
max_idx = max(max_idx, tmp_idx) |
|
|
|
|
|
self.n = max_idx |
|
|
|
|
|
|
|
|
|
|
|
self.y = (c_double * l)() |
|
|
|
|
|
for i, yi in enumerate(y): self.y[i] = yi |
|
|
|
|
|
|
|
|
|
|
|
self.x = (POINTER(svm_node) * l)() |
|
|
|
|
|
for i, xi in enumerate(self.x_space): self.x[i] = xi |
|
|
|
|
|
|
|
|
|
|
|
class svm_parameter(Structure): |
|
|
|
|
|
_names = ["svm_type", "kernel_type", "degree", "gamma", "coef0", |
|
|
|
|
|
"cache_size", "eps", "C", "nr_weight", "weight_label", "weight", |
|
|
|
|
|
"nu", "p", "shrinking", "probability"] |
|
|
|
|
|
_types = [c_int, c_int, c_int, c_double, c_double, |
|
|
|
|
|
c_double, c_double, c_double, c_int, POINTER(c_int), POINTER(c_double), |
|
|
|
|
|
c_double, c_double, c_int, c_int] |
|
|
|
|
|
_fields_ = genFields(_names, _types) |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, options = None): |
|
|
|
|
|
if options == None: |
|
|
|
|
|
options = '' |
|
|
|
|
|
self.parse_options(options) |
|
|
|
|
|
|
|
|
|
|
|
def __str__(self): |
|
|
|
|
|
s = '' |
|
|
|
|
|
attrs = svm_parameter._names + list(self.__dict__.keys()) |
|
|
|
|
|
values = map(lambda attr: getattr(self, attr), attrs) |
|
|
|
|
|
for attr, val in zip(attrs, values): |
|
|
|
|
|
s += (' %s: %s\n' % (attr, val)) |
|
|
|
|
|
s = s.strip() |
|
|
|
|
|
|
|
|
|
|
|
return s |
|
|
|
|
|
|
|
|
|
|
|
def set_to_default_values(self): |
|
|
|
|
|
self.svm_type = C_SVC; |
|
|
|
|
|
self.kernel_type = RBF |
|
|
|
|
|
self.degree = 3 |
|
|
|
|
|
self.gamma = 0 |
|
|
|
|
|
self.coef0 = 0 |
|
|
|
|
|
self.nu = 0.5 |
|
|
|
|
|
self.cache_size = 100 |
|
|
|
|
|
self.C = 1 |
|
|
|
|
|
self.eps = 0.001 |
|
|
|
|
|
self.p = 0.1 |
|
|
|
|
|
self.shrinking = 1 |
|
|
|
|
|
self.probability = 0 |
|
|
|
|
|
self.nr_weight = 0 |
|
|
|
|
|
self.weight_label = None |
|
|
|
|
|
self.weight = None |
|
|
|
|
|
self.cross_validation = False |
|
|
|
|
|
self.nr_fold = 0 |
|
|
|
|
|
self.print_func = cast(None, PRINT_STRING_FUN) |
|
|
|
|
|
|
|
|
|
|
|
def parse_options(self, options): |
|
|
|
|
|
if isinstance(options, list): |
|
|
|
|
|
argv = options |
|
|
|
|
|
elif isinstance(options, str): |
|
|
|
|
|
argv = options.split() |
|
|
|
|
|
else: |
|
|
|
|
|
raise TypeError("arg 1 should be a list or a str.") |
|
|
|
|
|
self.set_to_default_values() |
|
|
|
|
|
self.print_func = cast(None, PRINT_STRING_FUN) |
|
|
|
|
|
weight_label = [] |
|
|
|
|
|
weight = [] |
|
|
|
|
|
|
|
|
|
|
|
i = 0 |
|
|
|
|
|
while i < len(argv): |
|
|
|
|
|
if argv[i] == "-s": |
|
|
|
|
|
i = i + 1 |
|
|
|
|
|
self.svm_type = int(argv[i]) |
|
|
|
|
|
elif argv[i] == "-t": |
|
|
|
|
|
i = i + 1 |
|
|
|
|
|
self.kernel_type = int(argv[i]) |
|
|
|
|
|
elif argv[i] == "-d": |
|
|
|
|
|
i = i + 1 |
|
|
|
|
|
self.degree = int(argv[i]) |
|
|
|
|
|
elif argv[i] == "-g": |
|
|
|
|
|
i = i + 1 |
|
|
|
|
|
self.gamma = float(argv[i]) |
|
|
|
|
|
elif argv[i] == "-r": |
|
|
|
|
|
i = i + 1 |
|
|
|
|
|
self.coef0 = float(argv[i]) |
|
|
|
|
|
elif argv[i] == "-n": |
|
|
|
|
|
i = i + 1 |
|
|
|
|
|
self.nu = float(argv[i]) |
|
|
|
|
|
elif argv[i] == "-m": |
|
|
|
|
|
i = i + 1 |
|
|
|
|
|
self.cache_size = float(argv[i]) |
|
|
|
|
|
elif argv[i] == "-c": |
|
|
|
|
|
i = i + 1 |
|
|
|
|
|
self.C = float(argv[i]) |
|
|
|
|
|
elif argv[i] == "-e": |
|
|
|
|
|
i = i + 1 |
|
|
|
|
|
self.eps = float(argv[i]) |
|
|
|
|
|
elif argv[i] == "-p": |
|
|
|
|
|
i = i + 1 |
|
|
|
|
|
self.p = float(argv[i]) |
|
|
|
|
|
elif argv[i] == "-h": |
|
|
|
|
|
i = i + 1 |
|
|
|
|
|
self.shrinking = int(argv[i]) |
|
|
|
|
|
elif argv[i] == "-b": |
|
|
|
|
|
i = i + 1 |
|
|
|
|
|
self.probability = int(argv[i]) |
|
|
|
|
|
elif argv[i] == "-q": |
|
|
|
|
|
self.print_func = PRINT_STRING_FUN(print_null) |
|
|
|
|
|
elif argv[i] == "-v": |
|
|
|
|
|
i = i + 1 |
|
|
|
|
|
self.cross_validation = 1 |
|
|
|
|
|
self.nr_fold = int(argv[i]) |
|
|
|
|
|
if self.nr_fold < 2: |
|
|
|
|
|
raise ValueError("n-fold cross validation: n must >= 2") |
|
|
|
|
|
elif argv[i].startswith("-w"): |
|
|
|
|
|
i = i + 1 |
|
|
|
|
|
self.nr_weight += 1 |
|
|
|
|
|
weight_label += [int(argv[i-1][2:])] |
|
|
|
|
|
weight += [float(argv[i])] |
|
|
|
|
|
else: |
|
|
|
|
|
raise ValueError("Wrong options") |
|
|
|
|
|
i += 1 |
|
|
|
|
|
|
|
|
|
|
|
libsvm.svm_set_print_string_function(self.print_func) |
|
|
|
|
|
self.weight_label = (c_int*self.nr_weight)() |
|
|
|
|
|
self.weight = (c_double*self.nr_weight)() |
|
|
|
|
|
for i in range(self.nr_weight): |
|
|
|
|
|
self.weight[i] = weight[i] |
|
|
|
|
|
self.weight_label[i] = weight_label[i] |
|
|
|
|
|
|
|
|
|
|
|
class svm_model(Structure): |
|
|
|
|
|
_names = ['param', 'nr_class', 'l', 'SV', 'sv_coef', 'rho', |
|
|
|
|
|
'probA', 'probB', 'sv_indices', 'label', 'nSV', 'free_sv'] |
|
|
|
|
|
_types = [svm_parameter, c_int, c_int, POINTER(POINTER(svm_node)), |
|
|
|
|
|
POINTER(POINTER(c_double)), POINTER(c_double), |
|
|
|
|
|
POINTER(c_double), POINTER(c_double), POINTER(c_int), |
|
|
|
|
|
POINTER(c_int), POINTER(c_int), c_int] |
|
|
|
|
|
_fields_ = genFields(_names, _types) |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self): |
|
|
|
|
|
self.__createfrom__ = 'python' |
|
|
|
|
|
|
|
|
|
|
|
def __del__(self): |
|
|
|
|
|
# free memory created by C to avoid memory leak |
|
|
|
|
|
if hasattr(self, '__createfrom__') and self.__createfrom__ == 'C': |
|
|
|
|
|
libsvm.svm_free_and_destroy_model(pointer(self)) |
|
|
|
|
|
|
|
|
|
|
|
def get_svm_type(self): |
|
|
|
|
|
return libsvm.svm_get_svm_type(self) |
|
|
|
|
|
|
|
|
|
|
|
def get_nr_class(self): |
|
|
|
|
|
return libsvm.svm_get_nr_class(self) |
|
|
|
|
|
|
|
|
|
|
|
def get_svr_probability(self): |
|
|
|
|
|
return libsvm.svm_get_svr_probability(self) |
|
|
|
|
|
|
|
|
|
|
|
def get_labels(self): |
|
|
|
|
|
nr_class = self.get_nr_class() |
|
|
|
|
|
labels = (c_int * nr_class)() |
|
|
|
|
|
libsvm.svm_get_labels(self, labels) |
|
|
|
|
|
return labels[:nr_class] |
|
|
|
|
|
|
|
|
|
|
|
def get_sv_indices(self): |
|
|
|
|
|
total_sv = self.get_nr_sv() |
|
|
|
|
|
sv_indices = (c_int * total_sv)() |
|
|
|
|
|
libsvm.svm_get_sv_indices(self, sv_indices) |
|
|
|
|
|
return sv_indices[:total_sv] |
|
|
|
|
|
|
|
|
|
|
|
def get_nr_sv(self): |
|
|
|
|
|
return libsvm.svm_get_nr_sv(self) |
|
|
|
|
|
|
|
|
|
|
|
def is_probability_model(self): |
|
|
|
|
|
return (libsvm.svm_check_probability_model(self) == 1) |
|
|
|
|
|
|
|
|
|
|
|
def get_sv_coef(self): |
|
|
|
|
|
return [tuple(self.sv_coef[j][i] for j in xrange(self.nr_class - 1)) |
|
|
|
|
|
for i in xrange(self.l)] |
|
|
|
|
|
|
|
|
|
|
|
def get_SV(self): |
|
|
|
|
|
result = [] |
|
|
|
|
|
for sparse_sv in self.SV[:self.l]: |
|
|
|
|
|
row = dict() |
|
|
|
|
|
|
|
|
|
|
|
i = 0 |
|
|
|
|
|
while True: |
|
|
|
|
|
row[sparse_sv[i].index] = sparse_sv[i].value |
|
|
|
|
|
if sparse_sv[i].index == -1: |
|
|
|
|
|
break |
|
|
|
|
|
i += 1 |
|
|
|
|
|
|
|
|
|
|
|
result.append(row) |
|
|
|
|
|
return result |
|
|
|
|
|
|
|
|
|
|
|
def toPyModel(model_ptr): |
|
|
|
|
|
""" |
|
|
|
|
|
toPyModel(model_ptr) -> svm_model |
|
|
|
|
|
|
|
|
|
|
|
Convert a ctypes POINTER(svm_model) to a Python svm_model |
|
|
|
|
|
""" |
|
|
|
|
|
if bool(model_ptr) == False: |
|
|
|
|
|
raise ValueError("Null pointer") |
|
|
|
|
|
m = model_ptr.contents |
|
|
|
|
|
m.__createfrom__ = 'C' |
|
|
|
|
|
return m |
|
|
|
|
|
|
|
|
|
|
|
fillprototype(libsvm.svm_train, POINTER(svm_model), [POINTER(svm_problem), POINTER(svm_parameter)]) |
|
|
|
|
|
fillprototype(libsvm.svm_cross_validation, None, [POINTER(svm_problem), POINTER(svm_parameter), c_int, POINTER(c_double)]) |
|
|
|
|
|
|
|
|
|
|
|
fillprototype(libsvm.svm_save_model, c_int, [c_char_p, POINTER(svm_model)]) |
|
|
|
|
|
fillprototype(libsvm.svm_load_model, POINTER(svm_model), [c_char_p]) |
|
|
|
|
|
|
|
|
|
|
|
fillprototype(libsvm.svm_get_svm_type, c_int, [POINTER(svm_model)]) |
|
|
|
|
|
fillprototype(libsvm.svm_get_nr_class, c_int, [POINTER(svm_model)]) |
|
|
|
|
|
fillprototype(libsvm.svm_get_labels, None, [POINTER(svm_model), POINTER(c_int)]) |
|
|
|
|
|
fillprototype(libsvm.svm_get_sv_indices, None, [POINTER(svm_model), POINTER(c_int)]) |
|
|
|
|
|
fillprototype(libsvm.svm_get_nr_sv, c_int, [POINTER(svm_model)]) |
|
|
|
|
|
fillprototype(libsvm.svm_get_svr_probability, c_double, [POINTER(svm_model)]) |
|
|
|
|
|
|
|
|
|
|
|
fillprototype(libsvm.svm_predict_values, c_double, [POINTER(svm_model), POINTER(svm_node), POINTER(c_double)]) |
|
|
|
|
|
fillprototype(libsvm.svm_predict, c_double, [POINTER(svm_model), POINTER(svm_node)]) |
|
|
|
|
|
fillprototype(libsvm.svm_predict_probability, c_double, [POINTER(svm_model), POINTER(svm_node), POINTER(c_double)]) |
|
|
|
|
|
|
|
|
|
|
|
fillprototype(libsvm.svm_free_model_content, None, [POINTER(svm_model)]) |
|
|
|
|
|
fillprototype(libsvm.svm_free_and_destroy_model, None, [POINTER(POINTER(svm_model))]) |
|
|
|
|
|
fillprototype(libsvm.svm_destroy_param, None, [POINTER(svm_parameter)]) |
|
|
|
|
|
|
|
|
|
|
|
fillprototype(libsvm.svm_check_parameter, c_char_p, [POINTER(svm_problem), POINTER(svm_parameter)]) |
|
|
|
|
|
fillprototype(libsvm.svm_check_probability_model, c_int, [POINTER(svm_model)]) |
|
|
|
|
|
fillprototype(libsvm.svm_set_print_string_function, None, [PRINT_STRING_FUN]) |