Browse Source

New translations median_preimege_generator_cml.py (Chinese Simplified)

l10n_v0.2.x
linlin 4 years ago
parent
commit
13bc543d90
1 changed files with 113 additions and 0 deletions
  1. +113
    -0
      lang/zh/gklearn/examples/preimage/median_preimege_generator_cml.py

+ 113
- 0
lang/zh/gklearn/examples/preimage/median_preimege_generator_cml.py View File

@@ -0,0 +1,113 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 16 15:41:26 2020

@author: ljia

**This script demonstrates how to generate a graph preimage using Boria's method with cost matrices learning.**
"""

"""**1. Get dataset.**"""

from gklearn.utils import Dataset, split_dataset_by_target

# Predefined dataset name, use dataset "MAO".
ds_name = 'MAO'
# The node/edge labels that will not be used in the computation.
irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']}

# Initialize a Dataset.
dataset_all = Dataset()
# Load predefined dataset "MAO".
dataset_all.load_predefined_dataset(ds_name)
# Remove irrelevant labels.
dataset_all.remove_labels(**irrelevant_labels)
# Split the whole dataset according to the classification targets.
datasets = split_dataset_by_target(dataset_all)
# Get the first class of graphs, whose median preimage will be computed.
dataset = datasets[0]
len(dataset.graphs)

"""**2. Set parameters.**"""

import multiprocessing

# Parameters for MedianPreimageGenerator (our method).
mpg_options = {'init_method': 'random', # how to initialize node label cost vector. "random" means to initialize randomly.
'init_ecc': [4, 4, 2, 1, 1, 1], # initial edit costs.
'ds_name': ds_name, # name of the dataset.
'parallel': True, # @todo: whether the parallel scheme is to be used.
'time_limit_in_sec': 0, # maximum time limit to compute the preimage. If set to 0 then no limit.
'max_itrs': 3, # maximum iteration limit to optimize edit costs. If set to 0 then no limit.
'max_itrs_without_update': 3, # If the times that edit costs is not update is more than this number, then the optimization stops.
'epsilon_residual': 0.01, # In optimization, the residual is only considered changed if the change is bigger than this number.
'epsilon_ec': 0.1, # In optimization, the edit costs are only considered changed if the changes are bigger than this number.
'verbose': 2 # whether to print out results.
}
# Parameters for graph kernel computation.
kernel_options = {'name': 'PathUpToH', # use path kernel up to length h.
'depth': 9,
'k_func': 'MinMax',
'compute_method': 'trie',
'parallel': 'imap_unordered', # or None
'n_jobs': multiprocessing.cpu_count(),
'normalize': True, # whether to use normalized Gram matrix to optimize edit costs.
'verbose': 2 # whether to print out results.
}
# Parameters for GED computation.
ged_options = {'method': 'BIPARTITE', # use Bipartite huristic.
'initialization_method': 'RANDOM', # or 'NODE', etc.
'initial_solutions': 10, # when bigger than 1, then the method is considered mIPFP.
'edit_cost': 'CONSTANT', # @todo: not needed. use CONSTANT cost.
'attr_distance': 'euclidean', # @todo: not needed. the distance between non-symbolic node/edge labels is computed by euclidean distance.
'ratio_runs_from_initial_solutions': 1,
'threads': multiprocessing.cpu_count(), # parallel threads. Do not work if mpg_options['parallel'] = False.
'init_option': 'LAZY_WITHOUT_SHUFFLED_COPIES' # 'EAGER_WITHOUT_SHUFFLED_COPIES'
}
# Parameters for MedianGraphEstimator (Boria's method).
mge_options = {'init_type': 'MEDOID', # how to initial median (compute set-median). "MEDOID" is to use the graph with smallest SOD.
'random_inits': 10, # number of random initialization when 'init_type' = 'RANDOM'.
'time_limit': 600, # maximum time limit to compute the generalized median. If set to 0 then no limit.
'verbose': 2, # whether to print out results.
'refine': False # whether to refine the final SODs or not.
}
print('done.')

"""**3. Run median preimage generator.**"""

from gklearn.preimage import MedianPreimageGeneratorCML

# Create median preimage generator instance.
mpg = MedianPreimageGeneratorCML()
# Add dataset.
mpg.dataset = dataset
# Set parameters.
mpg.set_options(**mpg_options.copy())
mpg.kernel_options = kernel_options.copy()
mpg.ged_options = ged_options.copy()
mpg.mge_options = mge_options.copy()
# Run.
mpg.run()

"""**4. Get results.**"""

# Get results.
import pprint
pp = pprint.PrettyPrinter(indent=4) # pretty print
results = mpg.get_results()
pp.pprint(results)

# Draw generated graphs.
def draw_graph(graph):
import matplotlib.pyplot as plt
import networkx as nx
plt.figure()
pos = nx.spring_layout(graph)
nx.draw(graph, pos, node_size=500, labels=nx.get_node_attributes(graph, 'atom_symbol'), font_color='w', width=3, with_labels=True)
plt.show()
plt.clf()
plt.close()
draw_graph(mpg.set_median)
draw_graph(mpg.gen_median)

Loading…
Cancel
Save