|
|
@@ -0,0 +1,380 @@ |
|
|
|
#include <stdio.h> |
|
|
|
#include <stdlib.h> |
|
|
|
#include <string.h> |
|
|
|
#include <ctype.h> |
|
|
|
#include <errno.h> |
|
|
|
#include "svm.h" |
|
|
|
#define Malloc(type,n) (type *)malloc((n)*sizeof(type)) |
|
|
|
|
|
|
|
void print_null(const char *s) {} |
|
|
|
|
|
|
|
void exit_with_help() |
|
|
|
{ |
|
|
|
printf( |
|
|
|
"Usage: svm-train [options] training_set_file [model_file]\n" |
|
|
|
"options:\n" |
|
|
|
"-s svm_type : set type of SVM (default 0)\n" |
|
|
|
" 0 -- C-SVC (multi-class classification)\n" |
|
|
|
" 1 -- nu-SVC (multi-class classification)\n" |
|
|
|
" 2 -- one-class SVM\n" |
|
|
|
" 3 -- epsilon-SVR (regression)\n" |
|
|
|
" 4 -- nu-SVR (regression)\n" |
|
|
|
"-t kernel_type : set type of kernel function (default 2)\n" |
|
|
|
" 0 -- linear: u'*v\n" |
|
|
|
" 1 -- polynomial: (gamma*u'*v + coef0)^degree\n" |
|
|
|
" 2 -- radial basis function: exp(-gamma*|u-v|^2)\n" |
|
|
|
" 3 -- sigmoid: tanh(gamma*u'*v + coef0)\n" |
|
|
|
" 4 -- precomputed kernel (kernel values in training_set_file)\n" |
|
|
|
"-d degree : set degree in kernel function (default 3)\n" |
|
|
|
"-g gamma : set gamma in kernel function (default 1/num_features)\n" |
|
|
|
"-r coef0 : set coef0 in kernel function (default 0)\n" |
|
|
|
"-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)\n" |
|
|
|
"-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n" |
|
|
|
"-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n" |
|
|
|
"-m cachesize : set cache memory size in MB (default 100)\n" |
|
|
|
"-e epsilon : set tolerance of termination criterion (default 0.001)\n" |
|
|
|
"-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)\n" |
|
|
|
"-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)\n" |
|
|
|
"-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)\n" |
|
|
|
"-v n: n-fold cross validation mode\n" |
|
|
|
"-q : quiet mode (no outputs)\n" |
|
|
|
); |
|
|
|
exit(1); |
|
|
|
} |
|
|
|
|
|
|
|
void exit_input_error(int line_num) |
|
|
|
{ |
|
|
|
fprintf(stderr,"Wrong input format at line %d\n", line_num); |
|
|
|
exit(1); |
|
|
|
} |
|
|
|
|
|
|
|
void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name); |
|
|
|
void read_problem(const char *filename); |
|
|
|
void do_cross_validation(); |
|
|
|
|
|
|
|
struct svm_parameter param; // set by parse_command_line |
|
|
|
struct svm_problem prob; // set by read_problem |
|
|
|
struct svm_model *model; |
|
|
|
struct svm_node *x_space; |
|
|
|
int cross_validation; |
|
|
|
int nr_fold; |
|
|
|
|
|
|
|
static char *line = NULL; |
|
|
|
static int max_line_len; |
|
|
|
|
|
|
|
static char* readline(FILE *input) |
|
|
|
{ |
|
|
|
int len; |
|
|
|
|
|
|
|
if(fgets(line,max_line_len,input) == NULL) |
|
|
|
return NULL; |
|
|
|
|
|
|
|
while(strrchr(line,'\n') == NULL) |
|
|
|
{ |
|
|
|
max_line_len *= 2; |
|
|
|
line = (char *) realloc(line,max_line_len); |
|
|
|
len = (int) strlen(line); |
|
|
|
if(fgets(line+len,max_line_len-len,input) == NULL) |
|
|
|
break; |
|
|
|
} |
|
|
|
return line; |
|
|
|
} |
|
|
|
|
|
|
|
int main(int argc, char **argv) |
|
|
|
{ |
|
|
|
char input_file_name[1024]; |
|
|
|
char model_file_name[1024]; |
|
|
|
const char *error_msg; |
|
|
|
|
|
|
|
parse_command_line(argc, argv, input_file_name, model_file_name); |
|
|
|
read_problem(input_file_name); |
|
|
|
error_msg = svm_check_parameter(&prob,¶m); |
|
|
|
|
|
|
|
if(error_msg) |
|
|
|
{ |
|
|
|
fprintf(stderr,"ERROR: %s\n",error_msg); |
|
|
|
exit(1); |
|
|
|
} |
|
|
|
|
|
|
|
if(cross_validation) |
|
|
|
{ |
|
|
|
do_cross_validation(); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
model = svm_train(&prob,¶m); |
|
|
|
if(svm_save_model(model_file_name,model)) |
|
|
|
{ |
|
|
|
fprintf(stderr, "can't save model to file %s\n", model_file_name); |
|
|
|
exit(1); |
|
|
|
} |
|
|
|
svm_free_and_destroy_model(&model); |
|
|
|
} |
|
|
|
svm_destroy_param(¶m); |
|
|
|
free(prob.y); |
|
|
|
free(prob.x); |
|
|
|
free(x_space); |
|
|
|
free(line); |
|
|
|
|
|
|
|
return 0; |
|
|
|
} |
|
|
|
|
|
|
|
void do_cross_validation() |
|
|
|
{ |
|
|
|
int i; |
|
|
|
int total_correct = 0; |
|
|
|
double total_error = 0; |
|
|
|
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0; |
|
|
|
double *target = Malloc(double,prob.l); |
|
|
|
|
|
|
|
svm_cross_validation(&prob,¶m,nr_fold,target); |
|
|
|
if(param.svm_type == EPSILON_SVR || |
|
|
|
param.svm_type == NU_SVR) |
|
|
|
{ |
|
|
|
for(i=0;i<prob.l;i++) |
|
|
|
{ |
|
|
|
double y = prob.y[i]; |
|
|
|
double v = target[i]; |
|
|
|
total_error += (v-y)*(v-y); |
|
|
|
sumv += v; |
|
|
|
sumy += y; |
|
|
|
sumvv += v*v; |
|
|
|
sumyy += y*y; |
|
|
|
sumvy += v*y; |
|
|
|
} |
|
|
|
printf("Cross Validation Mean squared error = %g\n",total_error/prob.l); |
|
|
|
printf("Cross Validation Squared correlation coefficient = %g\n", |
|
|
|
((prob.l*sumvy-sumv*sumy)*(prob.l*sumvy-sumv*sumy))/ |
|
|
|
((prob.l*sumvv-sumv*sumv)*(prob.l*sumyy-sumy*sumy)) |
|
|
|
); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
for(i=0;i<prob.l;i++) |
|
|
|
if(target[i] == prob.y[i]) |
|
|
|
++total_correct; |
|
|
|
printf("Cross Validation Accuracy = %g%%\n",100.0*total_correct/prob.l); |
|
|
|
} |
|
|
|
free(target); |
|
|
|
} |
|
|
|
|
|
|
|
void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name) |
|
|
|
{ |
|
|
|
int i; |
|
|
|
void (*print_func)(const char*) = NULL; // default printing to stdout |
|
|
|
|
|
|
|
// default values |
|
|
|
param.svm_type = C_SVC; |
|
|
|
param.kernel_type = RBF; |
|
|
|
param.degree = 3; |
|
|
|
param.gamma = 0; // 1/num_features |
|
|
|
param.coef0 = 0; |
|
|
|
param.nu = 0.5; |
|
|
|
param.cache_size = 100; |
|
|
|
param.C = 1; |
|
|
|
param.eps = 1e-3; |
|
|
|
param.p = 0.1; |
|
|
|
param.shrinking = 1; |
|
|
|
param.probability = 0; |
|
|
|
param.nr_weight = 0; |
|
|
|
param.weight_label = NULL; |
|
|
|
param.weight = NULL; |
|
|
|
cross_validation = 0; |
|
|
|
|
|
|
|
// parse options |
|
|
|
for(i=1;i<argc;i++) |
|
|
|
{ |
|
|
|
if(argv[i][0] != '-') break; |
|
|
|
if(++i>=argc) |
|
|
|
exit_with_help(); |
|
|
|
switch(argv[i-1][1]) |
|
|
|
{ |
|
|
|
case 's': |
|
|
|
param.svm_type = atoi(argv[i]); |
|
|
|
break; |
|
|
|
case 't': |
|
|
|
param.kernel_type = atoi(argv[i]); |
|
|
|
break; |
|
|
|
case 'd': |
|
|
|
param.degree = atoi(argv[i]); |
|
|
|
break; |
|
|
|
case 'g': |
|
|
|
param.gamma = atof(argv[i]); |
|
|
|
break; |
|
|
|
case 'r': |
|
|
|
param.coef0 = atof(argv[i]); |
|
|
|
break; |
|
|
|
case 'n': |
|
|
|
param.nu = atof(argv[i]); |
|
|
|
break; |
|
|
|
case 'm': |
|
|
|
param.cache_size = atof(argv[i]); |
|
|
|
break; |
|
|
|
case 'c': |
|
|
|
param.C = atof(argv[i]); |
|
|
|
break; |
|
|
|
case 'e': |
|
|
|
param.eps = atof(argv[i]); |
|
|
|
break; |
|
|
|
case 'p': |
|
|
|
param.p = atof(argv[i]); |
|
|
|
break; |
|
|
|
case 'h': |
|
|
|
param.shrinking = atoi(argv[i]); |
|
|
|
break; |
|
|
|
case 'b': |
|
|
|
param.probability = atoi(argv[i]); |
|
|
|
break; |
|
|
|
case 'q': |
|
|
|
print_func = &print_null; |
|
|
|
i--; |
|
|
|
break; |
|
|
|
case 'v': |
|
|
|
cross_validation = 1; |
|
|
|
nr_fold = atoi(argv[i]); |
|
|
|
if(nr_fold < 2) |
|
|
|
{ |
|
|
|
fprintf(stderr,"n-fold cross validation: n must >= 2\n"); |
|
|
|
exit_with_help(); |
|
|
|
} |
|
|
|
break; |
|
|
|
case 'w': |
|
|
|
++param.nr_weight; |
|
|
|
param.weight_label = (int *)realloc(param.weight_label,sizeof(int)*param.nr_weight); |
|
|
|
param.weight = (double *)realloc(param.weight,sizeof(double)*param.nr_weight); |
|
|
|
param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]); |
|
|
|
param.weight[param.nr_weight-1] = atof(argv[i]); |
|
|
|
break; |
|
|
|
default: |
|
|
|
fprintf(stderr,"Unknown option: -%c\n", argv[i-1][1]); |
|
|
|
exit_with_help(); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
svm_set_print_string_function(print_func); |
|
|
|
|
|
|
|
// determine filenames |
|
|
|
|
|
|
|
if(i>=argc) |
|
|
|
exit_with_help(); |
|
|
|
|
|
|
|
strcpy(input_file_name, argv[i]); |
|
|
|
|
|
|
|
if(i<argc-1) |
|
|
|
strcpy(model_file_name,argv[i+1]); |
|
|
|
else |
|
|
|
{ |
|
|
|
char *p = strrchr(argv[i],'/'); |
|
|
|
if(p==NULL) |
|
|
|
p = argv[i]; |
|
|
|
else |
|
|
|
++p; |
|
|
|
sprintf(model_file_name,"%s.model",p); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// read in a problem (in svmlight format) |
|
|
|
|
|
|
|
void read_problem(const char *filename) |
|
|
|
{ |
|
|
|
int max_index, inst_max_index, i; |
|
|
|
size_t elements, j; |
|
|
|
FILE *fp = fopen(filename,"r"); |
|
|
|
char *endptr; |
|
|
|
char *idx, *val, *label; |
|
|
|
|
|
|
|
if(fp == NULL) |
|
|
|
{ |
|
|
|
fprintf(stderr,"can't open input file %s\n",filename); |
|
|
|
exit(1); |
|
|
|
} |
|
|
|
|
|
|
|
prob.l = 0; |
|
|
|
elements = 0; |
|
|
|
|
|
|
|
max_line_len = 1024; |
|
|
|
line = Malloc(char,max_line_len); |
|
|
|
while(readline(fp)!=NULL) |
|
|
|
{ |
|
|
|
char *p = strtok(line," \t"); // label |
|
|
|
|
|
|
|
// features |
|
|
|
while(1) |
|
|
|
{ |
|
|
|
p = strtok(NULL," \t"); |
|
|
|
if(p == NULL || *p == '\n') // check '\n' as ' ' may be after the last feature |
|
|
|
break; |
|
|
|
++elements; |
|
|
|
} |
|
|
|
++elements; |
|
|
|
++prob.l; |
|
|
|
} |
|
|
|
rewind(fp); |
|
|
|
|
|
|
|
prob.y = Malloc(double,prob.l); |
|
|
|
prob.x = Malloc(struct svm_node *,prob.l); |
|
|
|
x_space = Malloc(struct svm_node,elements); |
|
|
|
|
|
|
|
max_index = 0; |
|
|
|
j=0; |
|
|
|
for(i=0;i<prob.l;i++) |
|
|
|
{ |
|
|
|
inst_max_index = -1; // strtol gives 0 if wrong format, and precomputed kernel has <index> start from 0 |
|
|
|
readline(fp); |
|
|
|
prob.x[i] = &x_space[j]; |
|
|
|
label = strtok(line," \t\n"); |
|
|
|
if(label == NULL) // empty line |
|
|
|
exit_input_error(i+1); |
|
|
|
|
|
|
|
prob.y[i] = strtod(label,&endptr); |
|
|
|
if(endptr == label || *endptr != '\0') |
|
|
|
exit_input_error(i+1); |
|
|
|
|
|
|
|
while(1) |
|
|
|
{ |
|
|
|
idx = strtok(NULL,":"); |
|
|
|
val = strtok(NULL," \t"); |
|
|
|
|
|
|
|
if(val == NULL) |
|
|
|
break; |
|
|
|
|
|
|
|
errno = 0; |
|
|
|
x_space[j].index = (int) strtol(idx,&endptr,10); |
|
|
|
if(endptr == idx || errno != 0 || *endptr != '\0' || x_space[j].index <= inst_max_index) |
|
|
|
exit_input_error(i+1); |
|
|
|
else |
|
|
|
inst_max_index = x_space[j].index; |
|
|
|
|
|
|
|
errno = 0; |
|
|
|
x_space[j].value = strtod(val,&endptr); |
|
|
|
if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr))) |
|
|
|
exit_input_error(i+1); |
|
|
|
|
|
|
|
++j; |
|
|
|
} |
|
|
|
|
|
|
|
if(inst_max_index > max_index) |
|
|
|
max_index = inst_max_index; |
|
|
|
x_space[j++].index = -1; |
|
|
|
} |
|
|
|
|
|
|
|
if(param.gamma == 0 && max_index > 0) |
|
|
|
param.gamma = 1.0/max_index; |
|
|
|
|
|
|
|
if(param.kernel_type == PRECOMPUTED) |
|
|
|
for(i=0;i<prob.l;i++) |
|
|
|
{ |
|
|
|
if (prob.x[i][0].index != 0) |
|
|
|
{ |
|
|
|
fprintf(stderr,"Wrong input format: first column must be 0:sample_serial_number\n"); |
|
|
|
exit(1); |
|
|
|
} |
|
|
|
if ((int)prob.x[i][0].value <= 0 || (int)prob.x[i][0].value > max_index) |
|
|
|
{ |
|
|
|
fprintf(stderr,"Wrong input format: sample_serial_number out of range\n"); |
|
|
|
exit(1); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
fclose(fp); |
|
|
|
} |