Browse Source

New translations spectral_decomposition.py (French)

l10n_v0.2.x
linlin 4 years ago
parent
commit
1756ce6589
1 changed files with 7 additions and 7 deletions
  1. +7
    -7
      lang/fr/gklearn/kernels/spectral_decomposition.py

+ 7
- 7
lang/fr/gklearn/kernels/spectral_decomposition.py View File

@@ -66,7 +66,7 @@ class SpectralDecomposition(RandomWalkMeta):
iterator = itr
for i, j in iterator:
kernel = self.__kernel_do(q_T_list[i], q_T_list[j], P_list[i], P_list[j], D_list[i], D_list[j], self._weight, self._sub_kernel)
kernel = self._kernel_do(q_T_list[i], q_T_list[j], P_list[i], P_list[j], D_list[i], D_list[j], self._weight, self._sub_kernel)
gram_matrix[i][j] = kernel
gram_matrix[j][i] = kernel
@@ -162,7 +162,7 @@ class SpectralDecomposition(RandomWalkMeta):
iterator = range(len(g_list))
for i in iterator:
kernel = self.__kernel_do(q_T1, q_T_list[i], P1, P_list[i], D1, D_list[i], self._weight, self._sub_kernel)
kernel = self._kernel_do(q_T1, q_T_list[i], P1, P_list[i], D1, D_list[i], self._weight, self._sub_kernel)
kernel_list[i] = kernel
else: # @todo
@@ -190,9 +190,9 @@ class SpectralDecomposition(RandomWalkMeta):
P_list = []
D_list = []
if self._verbose >= 2:
iterator = tqdm(range(len(g_list)), desc='spectral decompose', file=sys.stdout)
iterator = tqdm(g_list, desc='spectral decompose', file=sys.stdout)
else:
iterator = range(len(g_list))
iterator = g_list
for G in iterator:
# don't normalize adjacency matrices if q is a uniform vector. Note
# A actually is the transpose of the adjacency matrix.
@@ -252,7 +252,7 @@ class SpectralDecomposition(RandomWalkMeta):
if self._p is None: # p is uniform distribution as default.
q_T1 = 1 / nx.number_of_nodes(g1)
q_T2 = 1 / nx.number_of_nodes(g2)
kernel = self.__kernel_do(q_T1, q_T2, P1, P2, D1, D2, self._weight, self._sub_kernel)
kernel = self._kernel_do(q_T1, q_T2, P1, P2, D1, D2, self._weight, self._sub_kernel)
else: # @todo
pass
else: # @todo
@@ -261,7 +261,7 @@ class SpectralDecomposition(RandomWalkMeta):
return kernel
def __kernel_do(self, q_T1, q_T2, P1, P2, D1, D2, weight, sub_kernel):
def _kernel_do(self, q_T1, q_T2, P1, P2, D1, D2, weight, sub_kernel):
# use uniform distribution if there is no prior knowledge.
kl = kron(np.dot(q_T1, P1), np.dot(q_T2, P2)).todense()
# @todo: this is not needed when p = q (kr = kl.T) for undirected graphs.
@@ -280,4 +280,4 @@ class SpectralDecomposition(RandomWalkMeta):
def _wrapper_kernel_do(self, itr):
i = itr[0]
j = itr[1]
return i, j, self.__kernel_do(G_q_T_list[i], G_q_T_list[j], G_P_list[i], G_P_list[j], G_D_list[i], G_D_list[j], self._weight, self._sub_kernel)
return i, j, self._kernel_do(G_q_T_list[i], G_q_T_list[j], G_P_list[i], G_P_list[j], G_D_list[i], G_D_list[j], self._weight, self._sub_kernel)

Loading…
Cancel
Save