|
@@ -0,0 +1,370 @@ |
|
|
|
|
|
#include <stdio.h> |
|
|
|
|
|
#include <stdlib.h> |
|
|
|
|
|
#include <string.h> |
|
|
|
|
|
#include "svm.h" |
|
|
|
|
|
|
|
|
|
|
|
#include "mex.h" |
|
|
|
|
|
#include "svm_model_matlab.h" |
|
|
|
|
|
|
|
|
|
|
|
#ifdef MX_API_VER |
|
|
|
|
|
#if MX_API_VER < 0x07030000 |
|
|
|
|
|
typedef int mwIndex; |
|
|
|
|
|
#endif |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
#define CMD_LEN 2048 |
|
|
|
|
|
|
|
|
|
|
|
int print_null(const char *s,...) {} |
|
|
|
|
|
int (*info)(const char *fmt,...) = &mexPrintf; |
|
|
|
|
|
|
|
|
|
|
|
void read_sparse_instance(const mxArray *prhs, int index, struct svm_node *x) |
|
|
|
|
|
{ |
|
|
|
|
|
int i, j, low, high; |
|
|
|
|
|
mwIndex *ir, *jc; |
|
|
|
|
|
double *samples; |
|
|
|
|
|
|
|
|
|
|
|
ir = mxGetIr(prhs); |
|
|
|
|
|
jc = mxGetJc(prhs); |
|
|
|
|
|
samples = mxGetPr(prhs); |
|
|
|
|
|
|
|
|
|
|
|
// each column is one instance |
|
|
|
|
|
j = 0; |
|
|
|
|
|
low = (int)jc[index], high = (int)jc[index+1]; |
|
|
|
|
|
for(i=low;i<high;i++) |
|
|
|
|
|
{ |
|
|
|
|
|
x[j].index = (int)ir[i] + 1; |
|
|
|
|
|
x[j].value = samples[i]; |
|
|
|
|
|
j++; |
|
|
|
|
|
} |
|
|
|
|
|
x[j].index = -1; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
static void fake_answer(int nlhs, mxArray *plhs[]) |
|
|
|
|
|
{ |
|
|
|
|
|
int i; |
|
|
|
|
|
for(i=0;i<nlhs;i++) |
|
|
|
|
|
plhs[i] = mxCreateDoubleMatrix(0, 0, mxREAL); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void predict(int nlhs, mxArray *plhs[], const mxArray *prhs[], struct svm_model *model, const int predict_probability) |
|
|
|
|
|
{ |
|
|
|
|
|
int label_vector_row_num, label_vector_col_num; |
|
|
|
|
|
int feature_number, testing_instance_number; |
|
|
|
|
|
int instance_index; |
|
|
|
|
|
double *ptr_instance, *ptr_label, *ptr_predict_label; |
|
|
|
|
|
double *ptr_prob_estimates, *ptr_dec_values, *ptr; |
|
|
|
|
|
struct svm_node *x; |
|
|
|
|
|
mxArray *pplhs[1]; // transposed instance sparse matrix |
|
|
|
|
|
mxArray *tplhs[3]; // temporary storage for plhs[] |
|
|
|
|
|
|
|
|
|
|
|
int correct = 0; |
|
|
|
|
|
int total = 0; |
|
|
|
|
|
double error = 0; |
|
|
|
|
|
double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0; |
|
|
|
|
|
|
|
|
|
|
|
int svm_type=svm_get_svm_type(model); |
|
|
|
|
|
int nr_class=svm_get_nr_class(model); |
|
|
|
|
|
double *prob_estimates=NULL; |
|
|
|
|
|
|
|
|
|
|
|
// prhs[1] = testing instance matrix |
|
|
|
|
|
feature_number = (int)mxGetN(prhs[1]); |
|
|
|
|
|
testing_instance_number = (int)mxGetM(prhs[1]); |
|
|
|
|
|
label_vector_row_num = (int)mxGetM(prhs[0]); |
|
|
|
|
|
label_vector_col_num = (int)mxGetN(prhs[0]); |
|
|
|
|
|
|
|
|
|
|
|
if(label_vector_row_num!=testing_instance_number) |
|
|
|
|
|
{ |
|
|
|
|
|
mexPrintf("Length of label vector does not match # of instances.\n"); |
|
|
|
|
|
fake_answer(nlhs, plhs); |
|
|
|
|
|
return; |
|
|
|
|
|
} |
|
|
|
|
|
if(label_vector_col_num!=1) |
|
|
|
|
|
{ |
|
|
|
|
|
mexPrintf("label (1st argument) should be a vector (# of column is 1).\n"); |
|
|
|
|
|
fake_answer(nlhs, plhs); |
|
|
|
|
|
return; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
ptr_instance = mxGetPr(prhs[1]); |
|
|
|
|
|
ptr_label = mxGetPr(prhs[0]); |
|
|
|
|
|
|
|
|
|
|
|
// transpose instance matrix |
|
|
|
|
|
if(mxIsSparse(prhs[1])) |
|
|
|
|
|
{ |
|
|
|
|
|
if(model->param.kernel_type == PRECOMPUTED) |
|
|
|
|
|
{ |
|
|
|
|
|
// precomputed kernel requires dense matrix, so we make one |
|
|
|
|
|
mxArray *rhs[1], *lhs[1]; |
|
|
|
|
|
rhs[0] = mxDuplicateArray(prhs[1]); |
|
|
|
|
|
if(mexCallMATLAB(1, lhs, 1, rhs, "full")) |
|
|
|
|
|
{ |
|
|
|
|
|
mexPrintf("Error: cannot full testing instance matrix\n"); |
|
|
|
|
|
fake_answer(nlhs, plhs); |
|
|
|
|
|
return; |
|
|
|
|
|
} |
|
|
|
|
|
ptr_instance = mxGetPr(lhs[0]); |
|
|
|
|
|
mxDestroyArray(rhs[0]); |
|
|
|
|
|
} |
|
|
|
|
|
else |
|
|
|
|
|
{ |
|
|
|
|
|
mxArray *pprhs[1]; |
|
|
|
|
|
pprhs[0] = mxDuplicateArray(prhs[1]); |
|
|
|
|
|
if(mexCallMATLAB(1, pplhs, 1, pprhs, "transpose")) |
|
|
|
|
|
{ |
|
|
|
|
|
mexPrintf("Error: cannot transpose testing instance matrix\n"); |
|
|
|
|
|
fake_answer(nlhs, plhs); |
|
|
|
|
|
return; |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
if(predict_probability) |
|
|
|
|
|
{ |
|
|
|
|
|
if(svm_type==NU_SVR || svm_type==EPSILON_SVR) |
|
|
|
|
|
info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model)); |
|
|
|
|
|
else |
|
|
|
|
|
prob_estimates = (double *) malloc(nr_class*sizeof(double)); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
tplhs[0] = mxCreateDoubleMatrix(testing_instance_number, 1, mxREAL); |
|
|
|
|
|
if(predict_probability) |
|
|
|
|
|
{ |
|
|
|
|
|
// prob estimates are in plhs[2] |
|
|
|
|
|
if(svm_type==C_SVC || svm_type==NU_SVC) |
|
|
|
|
|
tplhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_class, mxREAL); |
|
|
|
|
|
else |
|
|
|
|
|
tplhs[2] = mxCreateDoubleMatrix(0, 0, mxREAL); |
|
|
|
|
|
} |
|
|
|
|
|
else |
|
|
|
|
|
{ |
|
|
|
|
|
// decision values are in plhs[2] |
|
|
|
|
|
if(svm_type == ONE_CLASS || |
|
|
|
|
|
svm_type == EPSILON_SVR || |
|
|
|
|
|
svm_type == NU_SVR || |
|
|
|
|
|
nr_class == 1) // if only one class in training data, decision values are still returned. |
|
|
|
|
|
tplhs[2] = mxCreateDoubleMatrix(testing_instance_number, 1, mxREAL); |
|
|
|
|
|
else |
|
|
|
|
|
tplhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_class*(nr_class-1)/2, mxREAL); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
ptr_predict_label = mxGetPr(tplhs[0]); |
|
|
|
|
|
ptr_prob_estimates = mxGetPr(tplhs[2]); |
|
|
|
|
|
ptr_dec_values = mxGetPr(tplhs[2]); |
|
|
|
|
|
x = (struct svm_node*)malloc((feature_number+1)*sizeof(struct svm_node) ); |
|
|
|
|
|
for(instance_index=0;instance_index<testing_instance_number;instance_index++) |
|
|
|
|
|
{ |
|
|
|
|
|
int i; |
|
|
|
|
|
double target_label, predict_label; |
|
|
|
|
|
|
|
|
|
|
|
target_label = ptr_label[instance_index]; |
|
|
|
|
|
|
|
|
|
|
|
if(mxIsSparse(prhs[1]) && model->param.kernel_type != PRECOMPUTED) // prhs[1]^T is still sparse |
|
|
|
|
|
read_sparse_instance(pplhs[0], instance_index, x); |
|
|
|
|
|
else |
|
|
|
|
|
{ |
|
|
|
|
|
for(i=0;i<feature_number;i++) |
|
|
|
|
|
{ |
|
|
|
|
|
x[i].index = i+1; |
|
|
|
|
|
x[i].value = ptr_instance[testing_instance_number*i+instance_index]; |
|
|
|
|
|
} |
|
|
|
|
|
x[feature_number].index = -1; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
if(predict_probability) |
|
|
|
|
|
{ |
|
|
|
|
|
if(svm_type==C_SVC || svm_type==NU_SVC) |
|
|
|
|
|
{ |
|
|
|
|
|
predict_label = svm_predict_probability(model, x, prob_estimates); |
|
|
|
|
|
ptr_predict_label[instance_index] = predict_label; |
|
|
|
|
|
for(i=0;i<nr_class;i++) |
|
|
|
|
|
ptr_prob_estimates[instance_index + i * testing_instance_number] = prob_estimates[i]; |
|
|
|
|
|
} else { |
|
|
|
|
|
predict_label = svm_predict(model,x); |
|
|
|
|
|
ptr_predict_label[instance_index] = predict_label; |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
else |
|
|
|
|
|
{ |
|
|
|
|
|
if(svm_type == ONE_CLASS || |
|
|
|
|
|
svm_type == EPSILON_SVR || |
|
|
|
|
|
svm_type == NU_SVR) |
|
|
|
|
|
{ |
|
|
|
|
|
double res; |
|
|
|
|
|
predict_label = svm_predict_values(model, x, &res); |
|
|
|
|
|
ptr_dec_values[instance_index] = res; |
|
|
|
|
|
} |
|
|
|
|
|
else |
|
|
|
|
|
{ |
|
|
|
|
|
double *dec_values = (double *) malloc(sizeof(double) * nr_class*(nr_class-1)/2); |
|
|
|
|
|
predict_label = svm_predict_values(model, x, dec_values); |
|
|
|
|
|
if(nr_class == 1) |
|
|
|
|
|
ptr_dec_values[instance_index] = 1; |
|
|
|
|
|
else |
|
|
|
|
|
for(i=0;i<(nr_class*(nr_class-1))/2;i++) |
|
|
|
|
|
ptr_dec_values[instance_index + i * testing_instance_number] = dec_values[i]; |
|
|
|
|
|
free(dec_values); |
|
|
|
|
|
} |
|
|
|
|
|
ptr_predict_label[instance_index] = predict_label; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
if(predict_label == target_label) |
|
|
|
|
|
++correct; |
|
|
|
|
|
error += (predict_label-target_label)*(predict_label-target_label); |
|
|
|
|
|
sump += predict_label; |
|
|
|
|
|
sumt += target_label; |
|
|
|
|
|
sumpp += predict_label*predict_label; |
|
|
|
|
|
sumtt += target_label*target_label; |
|
|
|
|
|
sumpt += predict_label*target_label; |
|
|
|
|
|
++total; |
|
|
|
|
|
} |
|
|
|
|
|
if(svm_type==NU_SVR || svm_type==EPSILON_SVR) |
|
|
|
|
|
{ |
|
|
|
|
|
info("Mean squared error = %g (regression)\n",error/total); |
|
|
|
|
|
info("Squared correlation coefficient = %g (regression)\n", |
|
|
|
|
|
((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/ |
|
|
|
|
|
((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt)) |
|
|
|
|
|
); |
|
|
|
|
|
} |
|
|
|
|
|
else |
|
|
|
|
|
info("Accuracy = %g%% (%d/%d) (classification)\n", |
|
|
|
|
|
(double)correct/total*100,correct,total); |
|
|
|
|
|
|
|
|
|
|
|
// return accuracy, mean squared error, squared correlation coefficient |
|
|
|
|
|
tplhs[1] = mxCreateDoubleMatrix(3, 1, mxREAL); |
|
|
|
|
|
ptr = mxGetPr(tplhs[1]); |
|
|
|
|
|
ptr[0] = (double)correct/total*100; |
|
|
|
|
|
ptr[1] = error/total; |
|
|
|
|
|
ptr[2] = ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/ |
|
|
|
|
|
((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt)); |
|
|
|
|
|
|
|
|
|
|
|
free(x); |
|
|
|
|
|
if(prob_estimates != NULL) |
|
|
|
|
|
free(prob_estimates); |
|
|
|
|
|
|
|
|
|
|
|
switch(nlhs) |
|
|
|
|
|
{ |
|
|
|
|
|
case 3: |
|
|
|
|
|
plhs[2] = tplhs[2]; |
|
|
|
|
|
plhs[1] = tplhs[1]; |
|
|
|
|
|
case 1: |
|
|
|
|
|
case 0: |
|
|
|
|
|
plhs[0] = tplhs[0]; |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void exit_with_help() |
|
|
|
|
|
{ |
|
|
|
|
|
mexPrintf( |
|
|
|
|
|
"Usage: [predicted_label, accuracy, decision_values/prob_estimates] = svmpredict(testing_label_vector, testing_instance_matrix, model, 'libsvm_options')\n" |
|
|
|
|
|
" [predicted_label] = svmpredict(testing_label_vector, testing_instance_matrix, model, 'libsvm_options')\n" |
|
|
|
|
|
"Parameters:\n" |
|
|
|
|
|
" model: SVM model structure from svmtrain.\n" |
|
|
|
|
|
" libsvm_options:\n" |
|
|
|
|
|
" -b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yet\n" |
|
|
|
|
|
" -q : quiet mode (no outputs)\n" |
|
|
|
|
|
"Returns:\n" |
|
|
|
|
|
" predicted_label: SVM prediction output vector.\n" |
|
|
|
|
|
" accuracy: a vector with accuracy, mean squared error, squared correlation coefficient.\n" |
|
|
|
|
|
" prob_estimates: If selected, probability estimate vector.\n" |
|
|
|
|
|
); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void mexFunction( int nlhs, mxArray *plhs[], |
|
|
|
|
|
int nrhs, const mxArray *prhs[] ) |
|
|
|
|
|
{ |
|
|
|
|
|
int prob_estimate_flag = 0; |
|
|
|
|
|
struct svm_model *model; |
|
|
|
|
|
info = &mexPrintf; |
|
|
|
|
|
|
|
|
|
|
|
if(nlhs == 2 || nlhs > 3 || nrhs > 4 || nrhs < 3) |
|
|
|
|
|
{ |
|
|
|
|
|
exit_with_help(); |
|
|
|
|
|
fake_answer(nlhs, plhs); |
|
|
|
|
|
return; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
if(!mxIsDouble(prhs[0]) || !mxIsDouble(prhs[1])) { |
|
|
|
|
|
mexPrintf("Error: label vector and instance matrix must be double\n"); |
|
|
|
|
|
fake_answer(nlhs, plhs); |
|
|
|
|
|
return; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
if(mxIsStruct(prhs[2])) |
|
|
|
|
|
{ |
|
|
|
|
|
const char *error_msg; |
|
|
|
|
|
|
|
|
|
|
|
// parse options |
|
|
|
|
|
if(nrhs==4) |
|
|
|
|
|
{ |
|
|
|
|
|
int i, argc = 1; |
|
|
|
|
|
char cmd[CMD_LEN], *argv[CMD_LEN/2]; |
|
|
|
|
|
|
|
|
|
|
|
// put options in argv[] |
|
|
|
|
|
mxGetString(prhs[3], cmd, mxGetN(prhs[3]) + 1); |
|
|
|
|
|
if((argv[argc] = strtok(cmd, " ")) != NULL) |
|
|
|
|
|
while((argv[++argc] = strtok(NULL, " ")) != NULL) |
|
|
|
|
|
; |
|
|
|
|
|
|
|
|
|
|
|
for(i=1;i<argc;i++) |
|
|
|
|
|
{ |
|
|
|
|
|
if(argv[i][0] != '-') break; |
|
|
|
|
|
if((++i>=argc) && argv[i-1][1] != 'q') |
|
|
|
|
|
{ |
|
|
|
|
|
exit_with_help(); |
|
|
|
|
|
fake_answer(nlhs, plhs); |
|
|
|
|
|
return; |
|
|
|
|
|
} |
|
|
|
|
|
switch(argv[i-1][1]) |
|
|
|
|
|
{ |
|
|
|
|
|
case 'b': |
|
|
|
|
|
prob_estimate_flag = atoi(argv[i]); |
|
|
|
|
|
break; |
|
|
|
|
|
case 'q': |
|
|
|
|
|
i--; |
|
|
|
|
|
info = &print_null; |
|
|
|
|
|
break; |
|
|
|
|
|
default: |
|
|
|
|
|
mexPrintf("Unknown option: -%c\n", argv[i-1][1]); |
|
|
|
|
|
exit_with_help(); |
|
|
|
|
|
fake_answer(nlhs, plhs); |
|
|
|
|
|
return; |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
model = matlab_matrix_to_model(prhs[2], &error_msg); |
|
|
|
|
|
if (model == NULL) |
|
|
|
|
|
{ |
|
|
|
|
|
mexPrintf("Error: can't read model: %s\n", error_msg); |
|
|
|
|
|
fake_answer(nlhs, plhs); |
|
|
|
|
|
return; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
if(prob_estimate_flag) |
|
|
|
|
|
{ |
|
|
|
|
|
if(svm_check_probability_model(model)==0) |
|
|
|
|
|
{ |
|
|
|
|
|
mexPrintf("Model does not support probabiliy estimates\n"); |
|
|
|
|
|
fake_answer(nlhs, plhs); |
|
|
|
|
|
svm_free_and_destroy_model(&model); |
|
|
|
|
|
return; |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
else |
|
|
|
|
|
{ |
|
|
|
|
|
if(svm_check_probability_model(model)!=0) |
|
|
|
|
|
info("Model supports probability estimates, but disabled in predicton.\n"); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
predict(nlhs, plhs, prhs, model, prob_estimate_flag); |
|
|
|
|
|
// destroy model |
|
|
|
|
|
svm_free_and_destroy_model(&model); |
|
|
|
|
|
} |
|
|
|
|
|
else |
|
|
|
|
|
{ |
|
|
|
|
|
mexPrintf("model file should be a struct array\n"); |
|
|
|
|
|
fake_answer(nlhs, plhs); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
return; |
|
|
|
|
|
} |