|
|
@@ -158,7 +158,7 @@ def cross_validate(graphs, targets, kernel_name, output_dir='outputs/', ds_name= |
|
|
|
sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} |
|
|
|
param_grid_precomputed = {'compute_method': ['fp'], |
|
|
|
'node_kernels': [sub_kernel], 'edge_kernels': [sub_kernel], |
|
|
|
'weight': np.logspace(-3, -10, num=8, base=10)} |
|
|
|
'weight': np.logspace(-4, -10, num=7, base=10)} |
|
|
|
|
|
|
|
elif kernel_name == 'SpectralDecomposition': |
|
|
|
from gklearn.kernels.randomWalkKernel import randomwalkkernel |
|
|
@@ -196,14 +196,17 @@ def cross_validate(graphs, targets, kernel_name, output_dir='outputs/', ds_name= |
|
|
|
elif kernel_name == 'Treelet': |
|
|
|
from gklearn.kernels.treeletKernel import treeletkernel |
|
|
|
estimator = treeletkernel |
|
|
|
from gklearn.utils.kernels import polynomialkernel |
|
|
|
from gklearn.utils.kernels import gaussiankernel, polynomialkernel |
|
|
|
import functools |
|
|
|
gkernels = [functools.partial(gaussiankernel, gamma=1 / ga) |
|
|
|
# for ga in np.linspace(1, 10, 10)] |
|
|
|
for ga in np.logspace(0, 10, num=11, base=10)] |
|
|
|
pkernels = [functools.partial(polynomialkernel, d=d, c=c) for d in range(1, 11) |
|
|
|
for c in np.logspace(0, 10, num=11, base=10)] |
|
|
|
for ga in np.logspace(0, 10, num=11, base=10)] |
|
|
|
pkernels = [functools.partial(polynomialkernel, d=d, c=c) for d in range(1, 11) |
|
|
|
for c in np.logspace(0, 10, num=11, base=10)] |
|
|
|
# pkernels = [functools.partial(polynomialkernel, d=1, c=1)] |
|
|
|
|
|
|
|
param_grid_precomputed = {'sub_kernel': pkernels + gkernels} |
|
|
|
# 'parallel': [None]} |
|
|
|
|
|
|
|
elif kernel_name == 'WLSubtree': |
|
|
|
from gklearn.kernels.weisfeilerLehmanKernel import weisfeilerlehmankernel |
|
|
|