|
|
@@ -0,0 +1,318 @@ |
|
|
|
import libsvm.*; |
|
|
|
import java.io.*; |
|
|
|
import java.util.*; |
|
|
|
|
|
|
|
class svm_train { |
|
|
|
private svm_parameter param; // set by parse_command_line |
|
|
|
private svm_problem prob; // set by read_problem |
|
|
|
private svm_model model; |
|
|
|
private String input_file_name; // set by parse_command_line |
|
|
|
private String model_file_name; // set by parse_command_line |
|
|
|
private String error_msg; |
|
|
|
private int cross_validation; |
|
|
|
private int nr_fold; |
|
|
|
|
|
|
|
private static svm_print_interface svm_print_null = new svm_print_interface() |
|
|
|
{ |
|
|
|
public void print(String s) {} |
|
|
|
}; |
|
|
|
|
|
|
|
private static void exit_with_help() |
|
|
|
{ |
|
|
|
System.out.print( |
|
|
|
"Usage: svm_train [options] training_set_file [model_file]\n" |
|
|
|
+"options:\n" |
|
|
|
+"-s svm_type : set type of SVM (default 0)\n" |
|
|
|
+" 0 -- C-SVC (multi-class classification)\n" |
|
|
|
+" 1 -- nu-SVC (multi-class classification)\n" |
|
|
|
+" 2 -- one-class SVM\n" |
|
|
|
+" 3 -- epsilon-SVR (regression)\n" |
|
|
|
+" 4 -- nu-SVR (regression)\n" |
|
|
|
+"-t kernel_type : set type of kernel function (default 2)\n" |
|
|
|
+" 0 -- linear: u'*v\n" |
|
|
|
+" 1 -- polynomial: (gamma*u'*v + coef0)^degree\n" |
|
|
|
+" 2 -- radial basis function: exp(-gamma*|u-v|^2)\n" |
|
|
|
+" 3 -- sigmoid: tanh(gamma*u'*v + coef0)\n" |
|
|
|
+" 4 -- precomputed kernel (kernel values in training_set_file)\n" |
|
|
|
+"-d degree : set degree in kernel function (default 3)\n" |
|
|
|
+"-g gamma : set gamma in kernel function (default 1/num_features)\n" |
|
|
|
+"-r coef0 : set coef0 in kernel function (default 0)\n" |
|
|
|
+"-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)\n" |
|
|
|
+"-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n" |
|
|
|
+"-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n" |
|
|
|
+"-m cachesize : set cache memory size in MB (default 100)\n" |
|
|
|
+"-e epsilon : set tolerance of termination criterion (default 0.001)\n" |
|
|
|
+"-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)\n" |
|
|
|
+"-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)\n" |
|
|
|
+"-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)\n" |
|
|
|
+"-v n : n-fold cross validation mode\n" |
|
|
|
+"-q : quiet mode (no outputs)\n" |
|
|
|
); |
|
|
|
System.exit(1); |
|
|
|
} |
|
|
|
|
|
|
|
private void do_cross_validation() |
|
|
|
{ |
|
|
|
int i; |
|
|
|
int total_correct = 0; |
|
|
|
double total_error = 0; |
|
|
|
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0; |
|
|
|
double[] target = new double[prob.l]; |
|
|
|
|
|
|
|
svm.svm_cross_validation(prob,param,nr_fold,target); |
|
|
|
if(param.svm_type == svm_parameter.EPSILON_SVR || |
|
|
|
param.svm_type == svm_parameter.NU_SVR) |
|
|
|
{ |
|
|
|
for(i=0;i<prob.l;i++) |
|
|
|
{ |
|
|
|
double y = prob.y[i]; |
|
|
|
double v = target[i]; |
|
|
|
total_error += (v-y)*(v-y); |
|
|
|
sumv += v; |
|
|
|
sumy += y; |
|
|
|
sumvv += v*v; |
|
|
|
sumyy += y*y; |
|
|
|
sumvy += v*y; |
|
|
|
} |
|
|
|
System.out.print("Cross Validation Mean squared error = "+total_error/prob.l+"\n"); |
|
|
|
System.out.print("Cross Validation Squared correlation coefficient = "+ |
|
|
|
((prob.l*sumvy-sumv*sumy)*(prob.l*sumvy-sumv*sumy))/ |
|
|
|
((prob.l*sumvv-sumv*sumv)*(prob.l*sumyy-sumy*sumy))+"\n" |
|
|
|
); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
for(i=0;i<prob.l;i++) |
|
|
|
if(target[i] == prob.y[i]) |
|
|
|
++total_correct; |
|
|
|
System.out.print("Cross Validation Accuracy = "+100.0*total_correct/prob.l+"%\n"); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
private void run(String argv[]) throws IOException |
|
|
|
{ |
|
|
|
parse_command_line(argv); |
|
|
|
read_problem(); |
|
|
|
error_msg = svm.svm_check_parameter(prob,param); |
|
|
|
|
|
|
|
if(error_msg != null) |
|
|
|
{ |
|
|
|
System.err.print("ERROR: "+error_msg+"\n"); |
|
|
|
System.exit(1); |
|
|
|
} |
|
|
|
|
|
|
|
if(cross_validation != 0) |
|
|
|
{ |
|
|
|
do_cross_validation(); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
model = svm.svm_train(prob,param); |
|
|
|
svm.svm_save_model(model_file_name,model); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
public static void main(String argv[]) throws IOException |
|
|
|
{ |
|
|
|
svm_train t = new svm_train(); |
|
|
|
t.run(argv); |
|
|
|
} |
|
|
|
|
|
|
|
private static double atof(String s) |
|
|
|
{ |
|
|
|
double d = Double.valueOf(s).doubleValue(); |
|
|
|
if (Double.isNaN(d) || Double.isInfinite(d)) |
|
|
|
{ |
|
|
|
System.err.print("NaN or Infinity in input\n"); |
|
|
|
System.exit(1); |
|
|
|
} |
|
|
|
return(d); |
|
|
|
} |
|
|
|
|
|
|
|
private static int atoi(String s) |
|
|
|
{ |
|
|
|
return Integer.parseInt(s); |
|
|
|
} |
|
|
|
|
|
|
|
private void parse_command_line(String argv[]) |
|
|
|
{ |
|
|
|
int i; |
|
|
|
svm_print_interface print_func = null; // default printing to stdout |
|
|
|
|
|
|
|
param = new svm_parameter(); |
|
|
|
// default values |
|
|
|
param.svm_type = svm_parameter.C_SVC; |
|
|
|
param.kernel_type = svm_parameter.RBF; |
|
|
|
param.degree = 3; |
|
|
|
param.gamma = 0; // 1/num_features |
|
|
|
param.coef0 = 0; |
|
|
|
param.nu = 0.5; |
|
|
|
param.cache_size = 100; |
|
|
|
param.C = 1; |
|
|
|
param.eps = 1e-3; |
|
|
|
param.p = 0.1; |
|
|
|
param.shrinking = 1; |
|
|
|
param.probability = 0; |
|
|
|
param.nr_weight = 0; |
|
|
|
param.weight_label = new int[0]; |
|
|
|
param.weight = new double[0]; |
|
|
|
cross_validation = 0; |
|
|
|
|
|
|
|
// parse options |
|
|
|
for(i=0;i<argv.length;i++) |
|
|
|
{ |
|
|
|
if(argv[i].charAt(0) != '-') break; |
|
|
|
if(++i>=argv.length) |
|
|
|
exit_with_help(); |
|
|
|
switch(argv[i-1].charAt(1)) |
|
|
|
{ |
|
|
|
case 's': |
|
|
|
param.svm_type = atoi(argv[i]); |
|
|
|
break; |
|
|
|
case 't': |
|
|
|
param.kernel_type = atoi(argv[i]); |
|
|
|
break; |
|
|
|
case 'd': |
|
|
|
param.degree = atoi(argv[i]); |
|
|
|
break; |
|
|
|
case 'g': |
|
|
|
param.gamma = atof(argv[i]); |
|
|
|
break; |
|
|
|
case 'r': |
|
|
|
param.coef0 = atof(argv[i]); |
|
|
|
break; |
|
|
|
case 'n': |
|
|
|
param.nu = atof(argv[i]); |
|
|
|
break; |
|
|
|
case 'm': |
|
|
|
param.cache_size = atof(argv[i]); |
|
|
|
break; |
|
|
|
case 'c': |
|
|
|
param.C = atof(argv[i]); |
|
|
|
break; |
|
|
|
case 'e': |
|
|
|
param.eps = atof(argv[i]); |
|
|
|
break; |
|
|
|
case 'p': |
|
|
|
param.p = atof(argv[i]); |
|
|
|
break; |
|
|
|
case 'h': |
|
|
|
param.shrinking = atoi(argv[i]); |
|
|
|
break; |
|
|
|
case 'b': |
|
|
|
param.probability = atoi(argv[i]); |
|
|
|
break; |
|
|
|
case 'q': |
|
|
|
print_func = svm_print_null; |
|
|
|
i--; |
|
|
|
break; |
|
|
|
case 'v': |
|
|
|
cross_validation = 1; |
|
|
|
nr_fold = atoi(argv[i]); |
|
|
|
if(nr_fold < 2) |
|
|
|
{ |
|
|
|
System.err.print("n-fold cross validation: n must >= 2\n"); |
|
|
|
exit_with_help(); |
|
|
|
} |
|
|
|
break; |
|
|
|
case 'w': |
|
|
|
++param.nr_weight; |
|
|
|
{ |
|
|
|
int[] old = param.weight_label; |
|
|
|
param.weight_label = new int[param.nr_weight]; |
|
|
|
System.arraycopy(old,0,param.weight_label,0,param.nr_weight-1); |
|
|
|
} |
|
|
|
|
|
|
|
{ |
|
|
|
double[] old = param.weight; |
|
|
|
param.weight = new double[param.nr_weight]; |
|
|
|
System.arraycopy(old,0,param.weight,0,param.nr_weight-1); |
|
|
|
} |
|
|
|
|
|
|
|
param.weight_label[param.nr_weight-1] = atoi(argv[i-1].substring(2)); |
|
|
|
param.weight[param.nr_weight-1] = atof(argv[i]); |
|
|
|
break; |
|
|
|
default: |
|
|
|
System.err.print("Unknown option: " + argv[i-1] + "\n"); |
|
|
|
exit_with_help(); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
svm.svm_set_print_string_function(print_func); |
|
|
|
|
|
|
|
// determine filenames |
|
|
|
|
|
|
|
if(i>=argv.length) |
|
|
|
exit_with_help(); |
|
|
|
|
|
|
|
input_file_name = argv[i]; |
|
|
|
|
|
|
|
if(i<argv.length-1) |
|
|
|
model_file_name = argv[i+1]; |
|
|
|
else |
|
|
|
{ |
|
|
|
int p = argv[i].lastIndexOf('/'); |
|
|
|
++p; // whew... |
|
|
|
model_file_name = argv[i].substring(p)+".model"; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// read in a problem (in svmlight format) |
|
|
|
|
|
|
|
private void read_problem() throws IOException |
|
|
|
{ |
|
|
|
BufferedReader fp = new BufferedReader(new FileReader(input_file_name)); |
|
|
|
Vector<Double> vy = new Vector<Double>(); |
|
|
|
Vector<svm_node[]> vx = new Vector<svm_node[]>(); |
|
|
|
int max_index = 0; |
|
|
|
|
|
|
|
while(true) |
|
|
|
{ |
|
|
|
String line = fp.readLine(); |
|
|
|
if(line == null) break; |
|
|
|
|
|
|
|
StringTokenizer st = new StringTokenizer(line," \t\n\r\f:"); |
|
|
|
|
|
|
|
vy.addElement(atof(st.nextToken())); |
|
|
|
int m = st.countTokens()/2; |
|
|
|
svm_node[] x = new svm_node[m]; |
|
|
|
for(int j=0;j<m;j++) |
|
|
|
{ |
|
|
|
x[j] = new svm_node(); |
|
|
|
x[j].index = atoi(st.nextToken()); |
|
|
|
x[j].value = atof(st.nextToken()); |
|
|
|
} |
|
|
|
if(m>0) max_index = Math.max(max_index, x[m-1].index); |
|
|
|
vx.addElement(x); |
|
|
|
} |
|
|
|
|
|
|
|
prob = new svm_problem(); |
|
|
|
prob.l = vy.size(); |
|
|
|
prob.x = new svm_node[prob.l][]; |
|
|
|
for(int i=0;i<prob.l;i++) |
|
|
|
prob.x[i] = vx.elementAt(i); |
|
|
|
prob.y = new double[prob.l]; |
|
|
|
for(int i=0;i<prob.l;i++) |
|
|
|
prob.y[i] = vy.elementAt(i); |
|
|
|
|
|
|
|
if(param.gamma == 0 && max_index > 0) |
|
|
|
param.gamma = 1.0/max_index; |
|
|
|
|
|
|
|
if(param.kernel_type == svm_parameter.PRECOMPUTED) |
|
|
|
for(int i=0;i<prob.l;i++) |
|
|
|
{ |
|
|
|
if (prob.x[i][0].index != 0) |
|
|
|
{ |
|
|
|
System.err.print("Wrong kernel matrix: first column must be 0:sample_serial_number\n"); |
|
|
|
System.exit(1); |
|
|
|
} |
|
|
|
if ((int)prob.x[i][0].value <= 0 || (int)prob.x[i][0].value > max_index) |
|
|
|
{ |
|
|
|
System.err.print("Wrong input format: sample_serial_number out of range\n"); |
|
|
|
System.exit(1); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
fp.close(); |
|
|
|
} |
|
|
|
} |