|
@@ -0,0 +1,490 @@ |
|
|
|
|
|
""" |
|
|
|
|
|
@author: linlin |
|
|
|
|
|
|
|
|
|
|
|
@references: |
|
|
|
|
|
|
|
|
|
|
|
[1] Gaüzère B, Brun L, Villemin D. Two new graphs kernels in |
|
|
|
|
|
chemoinformatics. Pattern Recognition Letters. 2012 Nov 1;33(15):2038-47. |
|
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
import sys |
|
|
|
|
|
import time |
|
|
|
|
|
from collections import Counter |
|
|
|
|
|
from itertools import chain |
|
|
|
|
|
from functools import partial |
|
|
|
|
|
from multiprocessing import Pool |
|
|
|
|
|
from tqdm import tqdm |
|
|
|
|
|
|
|
|
|
|
|
import networkx as nx |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
|
|
|
|
|
|
from gklearn.utils.graphdataset import get_dataset_attributes |
|
|
|
|
|
from gklearn.utils.parallel import parallel_gm |
|
|
|
|
|
|
|
|
|
|
|
def treeletkernel(*args, |
|
|
|
|
|
sub_kernel, |
|
|
|
|
|
node_label='atom', |
|
|
|
|
|
edge_label='bond_type', |
|
|
|
|
|
parallel='imap_unordered', |
|
|
|
|
|
n_jobs=None, |
|
|
|
|
|
chunksize=None, |
|
|
|
|
|
verbose=True): |
|
|
|
|
|
"""Calculate treelet graph kernels between graphs. |
|
|
|
|
|
|
|
|
|
|
|
Parameters |
|
|
|
|
|
---------- |
|
|
|
|
|
Gn : List of NetworkX graph |
|
|
|
|
|
List of graphs between which the kernels are calculated. |
|
|
|
|
|
|
|
|
|
|
|
G1, G2 : NetworkX graphs |
|
|
|
|
|
Two graphs between which the kernel is calculated. |
|
|
|
|
|
|
|
|
|
|
|
sub_kernel : function |
|
|
|
|
|
The sub-kernel between 2 real number vectors. Each vector counts the |
|
|
|
|
|
numbers of isomorphic treelets in a graph. |
|
|
|
|
|
|
|
|
|
|
|
node_label : string |
|
|
|
|
|
Node attribute used as label. The default node label is atom. |
|
|
|
|
|
|
|
|
|
|
|
edge_label : string |
|
|
|
|
|
Edge attribute used as label. The default edge label is bond_type. |
|
|
|
|
|
|
|
|
|
|
|
parallel : string/None |
|
|
|
|
|
Which paralleliztion method is applied to compute the kernel. The |
|
|
|
|
|
Following choices are available: |
|
|
|
|
|
|
|
|
|
|
|
'imap_unordered': use Python's multiprocessing.Pool.imap_unordered |
|
|
|
|
|
method. |
|
|
|
|
|
|
|
|
|
|
|
None: no parallelization is applied. |
|
|
|
|
|
|
|
|
|
|
|
n_jobs : int |
|
|
|
|
|
Number of jobs for parallelization. The default is to use all |
|
|
|
|
|
computational cores. This argument is only valid when one of the |
|
|
|
|
|
parallelization method is applied. |
|
|
|
|
|
|
|
|
|
|
|
Return |
|
|
|
|
|
------ |
|
|
|
|
|
Kmatrix : Numpy matrix |
|
|
|
|
|
Kernel matrix, each element of which is the treelet kernel between 2 praphs. |
|
|
|
|
|
""" |
|
|
|
|
|
# pre-process |
|
|
|
|
|
Gn = args[0] if len(args) == 1 else [args[0], args[1]] |
|
|
|
|
|
Gn = [g.copy() for g in Gn] |
|
|
|
|
|
Kmatrix = np.zeros((len(Gn), len(Gn))) |
|
|
|
|
|
ds_attrs = get_dataset_attributes(Gn, |
|
|
|
|
|
attr_names=['node_labeled', 'edge_labeled', 'is_directed'], |
|
|
|
|
|
node_label=node_label, edge_label=edge_label) |
|
|
|
|
|
labeled = False |
|
|
|
|
|
if ds_attrs['node_labeled'] or ds_attrs['edge_labeled']: |
|
|
|
|
|
labeled = True |
|
|
|
|
|
if not ds_attrs['node_labeled']: |
|
|
|
|
|
for G in Gn: |
|
|
|
|
|
nx.set_node_attributes(G, '0', 'atom') |
|
|
|
|
|
if not ds_attrs['edge_labeled']: |
|
|
|
|
|
for G in Gn: |
|
|
|
|
|
nx.set_edge_attributes(G, '0', 'bond_type') |
|
|
|
|
|
|
|
|
|
|
|
start_time = time.time() |
|
|
|
|
|
|
|
|
|
|
|
# ---- use pool.imap_unordered to parallel and track progress. ---- |
|
|
|
|
|
if parallel == 'imap_unordered': |
|
|
|
|
|
# get all canonical keys of all graphs before calculating kernels to save |
|
|
|
|
|
# time, but this may cost a lot of memory for large dataset. |
|
|
|
|
|
pool = Pool(n_jobs) |
|
|
|
|
|
itr = zip(Gn, range(0, len(Gn))) |
|
|
|
|
|
if chunksize is None: |
|
|
|
|
|
if len(Gn) < 100 * n_jobs: |
|
|
|
|
|
chunksize = int(len(Gn) / n_jobs) + 1 |
|
|
|
|
|
else: |
|
|
|
|
|
chunksize = 100 |
|
|
|
|
|
canonkeys = [[] for _ in range(len(Gn))] |
|
|
|
|
|
get_partial = partial(wrapper_get_canonkeys, node_label, edge_label, |
|
|
|
|
|
labeled, ds_attrs['is_directed']) |
|
|
|
|
|
if verbose: |
|
|
|
|
|
iterator = tqdm(pool.imap_unordered(get_partial, itr, chunksize), |
|
|
|
|
|
desc='getting canonkeys', file=sys.stdout) |
|
|
|
|
|
else: |
|
|
|
|
|
iterator = pool.imap_unordered(get_partial, itr, chunksize) |
|
|
|
|
|
for i, ck in iterator: |
|
|
|
|
|
canonkeys[i] = ck |
|
|
|
|
|
pool.close() |
|
|
|
|
|
pool.join() |
|
|
|
|
|
|
|
|
|
|
|
# compute kernels. |
|
|
|
|
|
def init_worker(canonkeys_toshare): |
|
|
|
|
|
global G_canonkeys |
|
|
|
|
|
G_canonkeys = canonkeys_toshare |
|
|
|
|
|
do_partial = partial(wrapper_treeletkernel_do, sub_kernel) |
|
|
|
|
|
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, |
|
|
|
|
|
glbv=(canonkeys,), n_jobs=n_jobs, chunksize=chunksize, verbose=verbose) |
|
|
|
|
|
|
|
|
|
|
|
# ---- do not use parallelization. ---- |
|
|
|
|
|
elif parallel == None: |
|
|
|
|
|
# get all canonical keys of all graphs before calculating kernels to save |
|
|
|
|
|
# time, but this may cost a lot of memory for large dataset. |
|
|
|
|
|
canonkeys = [] |
|
|
|
|
|
for g in (tqdm(Gn, desc='getting canonkeys', file=sys.stdout) if verbose else Gn): |
|
|
|
|
|
canonkeys.append(get_canonkeys(g, node_label, edge_label, labeled, |
|
|
|
|
|
ds_attrs['is_directed'])) |
|
|
|
|
|
|
|
|
|
|
|
# compute kernels. |
|
|
|
|
|
from itertools import combinations_with_replacement |
|
|
|
|
|
itr = combinations_with_replacement(range(0, len(Gn)), 2) |
|
|
|
|
|
for i, j in (tqdm(itr, desc='getting canonkeys', file=sys.stdout) if verbose else itr): |
|
|
|
|
|
Kmatrix[i][j] = _treeletkernel_do(canonkeys[i], canonkeys[j], sub_kernel) |
|
|
|
|
|
Kmatrix[j][i] = Kmatrix[i][j] # @todo: no directed graph considered? |
|
|
|
|
|
|
|
|
|
|
|
else: |
|
|
|
|
|
raise Exception('No proper parallelization method designated.') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
run_time = time.time() - start_time |
|
|
|
|
|
if verbose: |
|
|
|
|
|
print("\n --- treelet kernel matrix of size %d built in %s seconds ---" |
|
|
|
|
|
% (len(Gn), run_time)) |
|
|
|
|
|
|
|
|
|
|
|
return Kmatrix, run_time |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _treeletkernel_do(canonkey1, canonkey2, sub_kernel): |
|
|
|
|
|
"""Calculate treelet graph kernel between 2 graphs. |
|
|
|
|
|
|
|
|
|
|
|
Parameters |
|
|
|
|
|
---------- |
|
|
|
|
|
canonkey1, canonkey2 : list |
|
|
|
|
|
List of canonical keys in 2 graphs, where each key is represented by a string. |
|
|
|
|
|
|
|
|
|
|
|
Return |
|
|
|
|
|
------ |
|
|
|
|
|
kernel : float |
|
|
|
|
|
Treelet Kernel between 2 graphs. |
|
|
|
|
|
""" |
|
|
|
|
|
keys = set(canonkey1.keys()) & set(canonkey2.keys()) # find same canonical keys in both graphs |
|
|
|
|
|
vector1 = np.array([(canonkey1[key] if (key in canonkey1.keys()) else 0) for key in keys]) |
|
|
|
|
|
vector2 = np.array([(canonkey2[key] if (key in canonkey2.keys()) else 0) for key in keys]) |
|
|
|
|
|
kernel = sub_kernel(vector1, vector2) |
|
|
|
|
|
return kernel |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def wrapper_treeletkernel_do(sub_kernel, itr): |
|
|
|
|
|
i = itr[0] |
|
|
|
|
|
j = itr[1] |
|
|
|
|
|
return i, j, _treeletkernel_do(G_canonkeys[i], G_canonkeys[j], sub_kernel) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_canonkeys(G, node_label, edge_label, labeled, is_directed): |
|
|
|
|
|
"""Generate canonical keys of all treelets in a graph. |
|
|
|
|
|
|
|
|
|
|
|
Parameters |
|
|
|
|
|
---------- |
|
|
|
|
|
G : NetworkX graphs |
|
|
|
|
|
The graph in which keys are generated. |
|
|
|
|
|
node_label : string |
|
|
|
|
|
node attribute used as label. The default node label is atom. |
|
|
|
|
|
edge_label : string |
|
|
|
|
|
edge attribute used as label. The default edge label is bond_type. |
|
|
|
|
|
labeled : boolean |
|
|
|
|
|
Whether the graphs are labeled. The default is True. |
|
|
|
|
|
|
|
|
|
|
|
Return |
|
|
|
|
|
------ |
|
|
|
|
|
canonkey/canonkey_l : dict |
|
|
|
|
|
For unlabeled graphs, canonkey is a dictionary which records amount of |
|
|
|
|
|
every tree pattern. For labeled graphs, canonkey_l is one which keeps |
|
|
|
|
|
track of amount of every treelet. |
|
|
|
|
|
""" |
|
|
|
|
|
patterns = {} # a dictionary which consists of lists of patterns for all graphlet. |
|
|
|
|
|
canonkey = {} # canonical key, a dictionary which records amount of every tree pattern. |
|
|
|
|
|
|
|
|
|
|
|
### structural analysis ### |
|
|
|
|
|
### In this section, a list of patterns is generated for each graphlet, |
|
|
|
|
|
### where every pattern is represented by nodes ordered by Morgan's |
|
|
|
|
|
### extended labeling. |
|
|
|
|
|
# linear patterns |
|
|
|
|
|
patterns['0'] = G.nodes() |
|
|
|
|
|
canonkey['0'] = nx.number_of_nodes(G) |
|
|
|
|
|
for i in range(1, 6): # for i in range(1, 6): |
|
|
|
|
|
patterns[str(i)] = find_all_paths(G, i, is_directed) |
|
|
|
|
|
canonkey[str(i)] = len(patterns[str(i)]) |
|
|
|
|
|
|
|
|
|
|
|
# n-star patterns |
|
|
|
|
|
patterns['3star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 3] |
|
|
|
|
|
patterns['4star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 4] |
|
|
|
|
|
patterns['5star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 5] |
|
|
|
|
|
# n-star patterns |
|
|
|
|
|
canonkey['6'] = len(patterns['3star']) |
|
|
|
|
|
canonkey['8'] = len(patterns['4star']) |
|
|
|
|
|
canonkey['d'] = len(patterns['5star']) |
|
|
|
|
|
|
|
|
|
|
|
# pattern 7 |
|
|
|
|
|
patterns['7'] = [] # the 1st line of Table 1 in Ref [1] |
|
|
|
|
|
for pattern in patterns['3star']: |
|
|
|
|
|
for i in range(1, len(pattern)): # for each neighbor of node 0 |
|
|
|
|
|
if G.degree(pattern[i]) >= 2: |
|
|
|
|
|
pattern_t = pattern[:] |
|
|
|
|
|
# set the node with degree >= 2 as the 4th node |
|
|
|
|
|
pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i] |
|
|
|
|
|
for neighborx in G[pattern[i]]: |
|
|
|
|
|
if neighborx != pattern[0]: |
|
|
|
|
|
new_pattern = pattern_t + [neighborx] |
|
|
|
|
|
patterns['7'].append(new_pattern) |
|
|
|
|
|
canonkey['7'] = len(patterns['7']) |
|
|
|
|
|
|
|
|
|
|
|
# pattern 11 |
|
|
|
|
|
patterns['11'] = [] # the 4th line of Table 1 in Ref [1] |
|
|
|
|
|
for pattern in patterns['4star']: |
|
|
|
|
|
for i in range(1, len(pattern)): |
|
|
|
|
|
if G.degree(pattern[i]) >= 2: |
|
|
|
|
|
pattern_t = pattern[:] |
|
|
|
|
|
pattern_t[i], pattern_t[4] = pattern_t[4], pattern_t[i] |
|
|
|
|
|
for neighborx in G[pattern[i]]: |
|
|
|
|
|
if neighborx != pattern[0]: |
|
|
|
|
|
new_pattern = pattern_t + [ neighborx ] |
|
|
|
|
|
patterns['11'].append(new_pattern) |
|
|
|
|
|
canonkey['b'] = len(patterns['11']) |
|
|
|
|
|
|
|
|
|
|
|
# pattern 12 |
|
|
|
|
|
patterns['12'] = [] # the 5th line of Table 1 in Ref [1] |
|
|
|
|
|
rootlist = [] # a list of root nodes, whose extended labels are 3 |
|
|
|
|
|
for pattern in patterns['3star']: |
|
|
|
|
|
if pattern[0] not in rootlist: # prevent to count the same pattern twice from each of the two root nodes |
|
|
|
|
|
rootlist.append(pattern[0]) |
|
|
|
|
|
for i in range(1, len(pattern)): |
|
|
|
|
|
if G.degree(pattern[i]) >= 3: |
|
|
|
|
|
rootlist.append(pattern[i]) |
|
|
|
|
|
pattern_t = pattern[:] |
|
|
|
|
|
pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i] |
|
|
|
|
|
for neighborx1 in G[pattern[i]]: |
|
|
|
|
|
if neighborx1 != pattern[0]: |
|
|
|
|
|
for neighborx2 in G[pattern[i]]: |
|
|
|
|
|
if neighborx1 > neighborx2 and neighborx2 != pattern[0]: |
|
|
|
|
|
new_pattern = pattern_t + [neighborx1] + [neighborx2] |
|
|
|
|
|
# new_patterns = [ pattern + [neighborx1] + [neighborx2] for neighborx1 in G[pattern[i]] if neighborx1 != pattern[0] for neighborx2 in G[pattern[i]] if (neighborx1 > neighborx2 and neighborx2 != pattern[0]) ] |
|
|
|
|
|
patterns['12'].append(new_pattern) |
|
|
|
|
|
canonkey['c'] = int(len(patterns['12']) / 2) |
|
|
|
|
|
|
|
|
|
|
|
# pattern 9 |
|
|
|
|
|
patterns['9'] = [] # the 2nd line of Table 1 in Ref [1] |
|
|
|
|
|
for pattern in patterns['3star']: |
|
|
|
|
|
for pairs in [ [neighbor1, neighbor2] for neighbor1 in G[pattern[0]] if G.degree(neighbor1) >= 2 \ |
|
|
|
|
|
for neighbor2 in G[pattern[0]] if G.degree(neighbor2) >= 2 if neighbor1 > neighbor2 ]: |
|
|
|
|
|
pattern_t = pattern[:] |
|
|
|
|
|
# move nodes with extended labels 4 to specific position to correspond to their children |
|
|
|
|
|
pattern_t[pattern_t.index(pairs[0])], pattern_t[2] = pattern_t[2], pattern_t[pattern_t.index(pairs[0])] |
|
|
|
|
|
pattern_t[pattern_t.index(pairs[1])], pattern_t[3] = pattern_t[3], pattern_t[pattern_t.index(pairs[1])] |
|
|
|
|
|
for neighborx1 in G[pairs[0]]: |
|
|
|
|
|
if neighborx1 != pattern[0]: |
|
|
|
|
|
for neighborx2 in G[pairs[1]]: |
|
|
|
|
|
if neighborx2 != pattern[0]: |
|
|
|
|
|
new_pattern = pattern_t + [neighborx1] + [neighborx2] |
|
|
|
|
|
patterns['9'].append(new_pattern) |
|
|
|
|
|
canonkey['9'] = len(patterns['9']) |
|
|
|
|
|
|
|
|
|
|
|
# pattern 10 |
|
|
|
|
|
patterns['10'] = [] # the 3rd line of Table 1 in Ref [1] |
|
|
|
|
|
for pattern in patterns['3star']: |
|
|
|
|
|
for i in range(1, len(pattern)): |
|
|
|
|
|
if G.degree(pattern[i]) >= 2: |
|
|
|
|
|
for neighborx in G[pattern[i]]: |
|
|
|
|
|
if neighborx != pattern[0] and G.degree(neighborx) >= 2: |
|
|
|
|
|
pattern_t = pattern[:] |
|
|
|
|
|
pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i] |
|
|
|
|
|
new_patterns = [ pattern_t + [neighborx] + [neighborxx] for neighborxx in G[neighborx] if neighborxx != pattern[i] ] |
|
|
|
|
|
patterns['10'].extend(new_patterns) |
|
|
|
|
|
canonkey['a'] = len(patterns['10']) |
|
|
|
|
|
|
|
|
|
|
|
### labeling information ### |
|
|
|
|
|
### In this section, a list of canonical keys is generated for every |
|
|
|
|
|
### pattern obtained in the structural analysis section above, which is a |
|
|
|
|
|
### string corresponding to a unique treelet. A dictionary is built to keep |
|
|
|
|
|
### track of the amount of every treelet. |
|
|
|
|
|
if labeled == True: |
|
|
|
|
|
canonkey_l = {} # canonical key, a dictionary which keeps track of amount of every treelet. |
|
|
|
|
|
|
|
|
|
|
|
# linear patterns |
|
|
|
|
|
canonkey_t = Counter(list(nx.get_node_attributes(G, node_label).values())) |
|
|
|
|
|
for key in canonkey_t: |
|
|
|
|
|
canonkey_l[('0', key)] = canonkey_t[key] |
|
|
|
|
|
|
|
|
|
|
|
for i in range(1, 6): # for i in range(1, 6): |
|
|
|
|
|
treelet = [] |
|
|
|
|
|
for pattern in patterns[str(i)]: |
|
|
|
|
|
canonlist = list(chain.from_iterable((G.nodes[node][node_label], \ |
|
|
|
|
|
G[node][pattern[idx+1]][edge_label]) for idx, node in enumerate(pattern[:-1]))) |
|
|
|
|
|
canonlist.append(G.nodes[pattern[-1]][node_label]) |
|
|
|
|
|
canonkey_t = canonlist if canonlist < canonlist[::-1] else canonlist[::-1] |
|
|
|
|
|
treelet.append(tuple([str(i)] + canonkey_t)) |
|
|
|
|
|
canonkey_l.update(Counter(treelet)) |
|
|
|
|
|
|
|
|
|
|
|
# n-star patterns |
|
|
|
|
|
for i in range(3, 6): |
|
|
|
|
|
treelet = [] |
|
|
|
|
|
for pattern in patterns[str(i) + 'star']: |
|
|
|
|
|
canonlist = [tuple((G.nodes[leaf][node_label], |
|
|
|
|
|
G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:]] |
|
|
|
|
|
canonlist.sort() |
|
|
|
|
|
canonlist = list(chain.from_iterable(canonlist)) |
|
|
|
|
|
canonkey_t = tuple(['d' if i == 5 else str(i * 2)] + |
|
|
|
|
|
[G.nodes[pattern[0]][node_label]] + canonlist) |
|
|
|
|
|
treelet.append(canonkey_t) |
|
|
|
|
|
canonkey_l.update(Counter(treelet)) |
|
|
|
|
|
|
|
|
|
|
|
# pattern 7 |
|
|
|
|
|
treelet = [] |
|
|
|
|
|
for pattern in patterns['7']: |
|
|
|
|
|
canonlist = [tuple((G.nodes[leaf][node_label], |
|
|
|
|
|
G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:3]] |
|
|
|
|
|
canonlist.sort() |
|
|
|
|
|
canonlist = list(chain.from_iterable(canonlist)) |
|
|
|
|
|
canonkey_t = tuple(['7'] + [G.nodes[pattern[0]][node_label]] + canonlist |
|
|
|
|
|
+ [G.nodes[pattern[3]][node_label]] |
|
|
|
|
|
+ [G[pattern[3]][pattern[0]][edge_label]] |
|
|
|
|
|
+ [G.nodes[pattern[4]][node_label]] |
|
|
|
|
|
+ [G[pattern[4]][pattern[3]][edge_label]]) |
|
|
|
|
|
treelet.append(canonkey_t) |
|
|
|
|
|
canonkey_l.update(Counter(treelet)) |
|
|
|
|
|
|
|
|
|
|
|
# pattern 11 |
|
|
|
|
|
treelet = [] |
|
|
|
|
|
for pattern in patterns['11']: |
|
|
|
|
|
canonlist = [tuple((G.nodes[leaf][node_label], |
|
|
|
|
|
G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:4]] |
|
|
|
|
|
canonlist.sort() |
|
|
|
|
|
canonlist = list(chain.from_iterable(canonlist)) |
|
|
|
|
|
canonkey_t = tuple(['b'] + [G.nodes[pattern[0]][node_label]] + canonlist |
|
|
|
|
|
+ [G.nodes[pattern[4]][node_label]] |
|
|
|
|
|
+ [G[pattern[4]][pattern[0]][edge_label]] |
|
|
|
|
|
+ [G.nodes[pattern[5]][node_label]] |
|
|
|
|
|
+ [G[pattern[5]][pattern[4]][edge_label]]) |
|
|
|
|
|
treelet.append(canonkey_t) |
|
|
|
|
|
canonkey_l.update(Counter(treelet)) |
|
|
|
|
|
|
|
|
|
|
|
# pattern 10 |
|
|
|
|
|
treelet = [] |
|
|
|
|
|
for pattern in patterns['10']: |
|
|
|
|
|
canonkey4 = [G.nodes[pattern[5]][node_label], G[pattern[5]][pattern[4]][edge_label]] |
|
|
|
|
|
canonlist = [tuple((G.nodes[leaf][node_label], |
|
|
|
|
|
G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:3]] |
|
|
|
|
|
canonlist.sort() |
|
|
|
|
|
canonkey0 = list(chain.from_iterable(canonlist)) |
|
|
|
|
|
canonkey_t = tuple(['a'] + [G.nodes[pattern[3]][node_label]] |
|
|
|
|
|
+ [G.nodes[pattern[4]][node_label]] |
|
|
|
|
|
+ [G[pattern[4]][pattern[3]][edge_label]] |
|
|
|
|
|
+ [G.nodes[pattern[0]][node_label]] |
|
|
|
|
|
+ [G[pattern[0]][pattern[3]][edge_label]] |
|
|
|
|
|
+ canonkey4 + canonkey0) |
|
|
|
|
|
treelet.append(canonkey_t) |
|
|
|
|
|
canonkey_l.update(Counter(treelet)) |
|
|
|
|
|
|
|
|
|
|
|
# pattern 12 |
|
|
|
|
|
treelet = [] |
|
|
|
|
|
for pattern in patterns['12']: |
|
|
|
|
|
canonlist0 = [tuple((G.nodes[leaf][node_label], |
|
|
|
|
|
G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:3]] |
|
|
|
|
|
canonlist0.sort() |
|
|
|
|
|
canonlist0 = list(chain.from_iterable(canonlist0)) |
|
|
|
|
|
canonlist3 = [tuple((G.nodes[leaf][node_label], |
|
|
|
|
|
G[leaf][pattern[3]][edge_label])) for leaf in pattern[4:6]] |
|
|
|
|
|
canonlist3.sort() |
|
|
|
|
|
canonlist3 = list(chain.from_iterable(canonlist3)) |
|
|
|
|
|
|
|
|
|
|
|
# 2 possible key can be generated from 2 nodes with extended label 3, |
|
|
|
|
|
# select the one with lower lexicographic order. |
|
|
|
|
|
canonkey_t1 = tuple(['c'] + [G.nodes[pattern[0]][node_label]] + canonlist0 |
|
|
|
|
|
+ [G.nodes[pattern[3]][node_label]] |
|
|
|
|
|
+ [G[pattern[3]][pattern[0]][edge_label]] |
|
|
|
|
|
+ canonlist3) |
|
|
|
|
|
canonkey_t2 = tuple(['c'] + [G.nodes[pattern[3]][node_label]] + canonlist3 |
|
|
|
|
|
+ [G.nodes[pattern[0]][node_label]] |
|
|
|
|
|
+ [G[pattern[0]][pattern[3]][edge_label]] |
|
|
|
|
|
+ canonlist0) |
|
|
|
|
|
treelet.append(canonkey_t1 if canonkey_t1 < canonkey_t2 else canonkey_t2) |
|
|
|
|
|
canonkey_l.update(Counter(treelet)) |
|
|
|
|
|
|
|
|
|
|
|
# pattern 9 |
|
|
|
|
|
treelet = [] |
|
|
|
|
|
for pattern in patterns['9']: |
|
|
|
|
|
canonkey2 = [G.nodes[pattern[4]][node_label], G[pattern[4]][pattern[2]][edge_label]] |
|
|
|
|
|
canonkey3 = [G.nodes[pattern[5]][node_label], G[pattern[5]][pattern[3]][edge_label]] |
|
|
|
|
|
prekey2 = [G.nodes[pattern[2]][node_label], G[pattern[2]][pattern[0]][edge_label]] |
|
|
|
|
|
prekey3 = [G.nodes[pattern[3]][node_label], G[pattern[3]][pattern[0]][edge_label]] |
|
|
|
|
|
if prekey2 + canonkey2 < prekey3 + canonkey3: |
|
|
|
|
|
canonkey_t = [G.nodes[pattern[1]][node_label]] \ |
|
|
|
|
|
+ [G[pattern[1]][pattern[0]][edge_label]] \ |
|
|
|
|
|
+ prekey2 + prekey3 + canonkey2 + canonkey3 |
|
|
|
|
|
else: |
|
|
|
|
|
canonkey_t = [G.nodes[pattern[1]][node_label]] \ |
|
|
|
|
|
+ [G[pattern[1]][pattern[0]][edge_label]] \ |
|
|
|
|
|
+ prekey3 + prekey2 + canonkey3 + canonkey2 |
|
|
|
|
|
treelet.append(tuple(['9'] + [G.nodes[pattern[0]][node_label]] + canonkey_t)) |
|
|
|
|
|
canonkey_l.update(Counter(treelet)) |
|
|
|
|
|
|
|
|
|
|
|
return canonkey_l |
|
|
|
|
|
|
|
|
|
|
|
return canonkey |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def wrapper_get_canonkeys(node_label, edge_label, labeled, is_directed, itr_item): |
|
|
|
|
|
g = itr_item[0] |
|
|
|
|
|
i = itr_item[1] |
|
|
|
|
|
return i, get_canonkeys(g, node_label, edge_label, labeled, is_directed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def find_paths(G, source_node, length): |
|
|
|
|
|
"""Find all paths with a certain length those start from a source node. |
|
|
|
|
|
A recursive depth first search is applied. |
|
|
|
|
|
|
|
|
|
|
|
Parameters |
|
|
|
|
|
---------- |
|
|
|
|
|
G : NetworkX graphs |
|
|
|
|
|
The graph in which paths are searched. |
|
|
|
|
|
source_node : integer |
|
|
|
|
|
The number of the node from where all paths start. |
|
|
|
|
|
length : integer |
|
|
|
|
|
The length of paths. |
|
|
|
|
|
|
|
|
|
|
|
Return |
|
|
|
|
|
------ |
|
|
|
|
|
path : list of list |
|
|
|
|
|
List of paths retrieved, where each path is represented by a list of nodes. |
|
|
|
|
|
""" |
|
|
|
|
|
if length == 0: |
|
|
|
|
|
return [[source_node]] |
|
|
|
|
|
path = [[source_node] + path for neighbor in G[source_node] \ |
|
|
|
|
|
for path in find_paths(G, neighbor, length - 1) if source_node not in path] |
|
|
|
|
|
return path |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def find_all_paths(G, length, is_directed): |
|
|
|
|
|
"""Find all paths with a certain length in a graph. A recursive depth first |
|
|
|
|
|
search is applied. |
|
|
|
|
|
|
|
|
|
|
|
Parameters |
|
|
|
|
|
---------- |
|
|
|
|
|
G : NetworkX graphs |
|
|
|
|
|
The graph in which paths are searched. |
|
|
|
|
|
length : integer |
|
|
|
|
|
The length of paths. |
|
|
|
|
|
|
|
|
|
|
|
Return |
|
|
|
|
|
------ |
|
|
|
|
|
path : list of list |
|
|
|
|
|
List of paths retrieved, where each path is represented by a list of nodes. |
|
|
|
|
|
""" |
|
|
|
|
|
all_paths = [] |
|
|
|
|
|
for node in G: |
|
|
|
|
|
all_paths.extend(find_paths(G, node, length)) |
|
|
|
|
|
|
|
|
|
|
|
if not is_directed: |
|
|
|
|
|
# For each path, two presentations are retrieved from its two extremities. |
|
|
|
|
|
# Remove one of them. |
|
|
|
|
|
all_paths_r = [path[::-1] for path in all_paths] |
|
|
|
|
|
for idx, path in enumerate(all_paths[:-1]): |
|
|
|
|
|
for path2 in all_paths_r[idx+1::]: |
|
|
|
|
|
if path == path2: |
|
|
|
|
|
all_paths[idx] = [] |
|
|
|
|
|
break |
|
|
|
|
|
all_paths = list(filter(lambda a: a != [], all_paths)) |
|
|
|
|
|
|
|
|
|
|
|
return all_paths |