|
|
@@ -0,0 +1,603 @@ |
|
|
|
#!/usr/bin/env python3 |
|
|
|
# -*- coding: utf-8 -*- |
|
|
|
""" |
|
|
|
Created on Fri Apr 10 18:33:13 2020 |
|
|
|
|
|
|
|
@author: ljia |
|
|
|
|
|
|
|
@references: |
|
|
|
|
|
|
|
[1] Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre |
|
|
|
Baldi. Graph kernels for chemical informatics. Neural networks, |
|
|
|
18(8):1093–1110, 2005. |
|
|
|
""" |
|
|
|
import sys |
|
|
|
from multiprocessing import Pool |
|
|
|
from tqdm import tqdm |
|
|
|
import numpy as np |
|
|
|
import networkx as nx |
|
|
|
from collections import Counter |
|
|
|
from functools import partial |
|
|
|
from gklearn.utils import SpecialLabel |
|
|
|
from gklearn.utils.parallel import parallel_gm, parallel_me |
|
|
|
from gklearn.kernels import GraphKernel |
|
|
|
from gklearn.utils import Trie |
|
|
|
|
|
|
|
|
|
|
|
class PathUpToH(GraphKernel): # @todo: add function for k_func == None |
|
|
|
|
|
|
|
def __init__(self, **kwargs): |
|
|
|
GraphKernel.__init__(self) |
|
|
|
self.__node_labels = kwargs.get('node_labels', []) |
|
|
|
self.__edge_labels = kwargs.get('edge_labels', []) |
|
|
|
self.__depth = int(kwargs.get('depth', 10)) |
|
|
|
self.__k_func = kwargs.get('k_func', 'MinMax') |
|
|
|
self.__compute_method = kwargs.get('compute_method', 'trie') |
|
|
|
self.__ds_infos = kwargs.get('ds_infos', {}) |
|
|
|
|
|
|
|
|
|
|
|
def _compute_gm_series(self): |
|
|
|
self.__add_dummy_labels(self._graphs) |
|
|
|
|
|
|
|
from itertools import combinations_with_replacement |
|
|
|
itr_kernel = combinations_with_replacement(range(0, len(self._graphs)), 2) |
|
|
|
if self._verbose >= 2: |
|
|
|
iterator_ps = tqdm(range(0, len(self._graphs)), desc='getting paths', file=sys.stdout) |
|
|
|
iterator_kernel = tqdm(itr_kernel, desc='calculating kernels', file=sys.stdout) |
|
|
|
else: |
|
|
|
iterator_ps = range(0, len(self._graphs)) |
|
|
|
iterator_kernel = itr_kernel |
|
|
|
|
|
|
|
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) |
|
|
|
|
|
|
|
if self.__compute_method == 'trie': |
|
|
|
all_paths = [self.__find_all_path_as_trie(self._graphs[i]) for i in iterator_ps] |
|
|
|
for i, j in iterator_kernel: |
|
|
|
kernel = self.__kernel_do_trie(all_paths[i], all_paths[j]) |
|
|
|
gram_matrix[i][j] = kernel |
|
|
|
gram_matrix[j][i] = kernel |
|
|
|
else: |
|
|
|
all_paths = [self.__find_all_paths_until_length(self._graphs[i]) for i in iterator_ps] |
|
|
|
for i, j in iterator_kernel: |
|
|
|
kernel = self.__kernel_do_naive(all_paths[i], all_paths[j]) |
|
|
|
gram_matrix[i][j] = kernel |
|
|
|
gram_matrix[j][i] = kernel |
|
|
|
|
|
|
|
return gram_matrix |
|
|
|
|
|
|
|
|
|
|
|
def _compute_gm_imap_unordered(self): |
|
|
|
self.__add_dummy_labels(self._graphs) |
|
|
|
|
|
|
|
# get all paths of all graphs before calculating kernels to save time, |
|
|
|
# but this may cost a lot of memory for large datasets. |
|
|
|
pool = Pool(self._n_jobs) |
|
|
|
itr = zip(self._graphs, range(0, len(self._graphs))) |
|
|
|
if len(self._graphs) < 100 * self._n_jobs: |
|
|
|
chunksize = int(len(self._graphs) / self._n_jobs) + 1 |
|
|
|
else: |
|
|
|
chunksize = 100 |
|
|
|
all_paths = [[] for _ in range(len(self._graphs))] |
|
|
|
if self.__compute_method == 'trie' and self.__k_func is not None: |
|
|
|
get_ps_fun = self._wrapper_find_all_path_as_trie |
|
|
|
elif self.__compute_method != 'trie' and self.__k_func is not None: |
|
|
|
get_ps_fun = partial(self._wrapper_find_all_paths_until_length, True) |
|
|
|
else: |
|
|
|
get_ps_fun = partial(self._wrapper_find_all_paths_until_length, False) |
|
|
|
if self._verbose >= 2: |
|
|
|
iterator = tqdm(pool.imap_unordered(get_ps_fun, itr, chunksize), |
|
|
|
desc='getting paths', file=sys.stdout) |
|
|
|
else: |
|
|
|
iterator = pool.imap_unordered(get_ps_fun, itr, chunksize) |
|
|
|
for i, ps in iterator: |
|
|
|
all_paths[i] = ps |
|
|
|
pool.close() |
|
|
|
pool.join() |
|
|
|
|
|
|
|
# compute Gram matrix. |
|
|
|
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) |
|
|
|
|
|
|
|
if self.__compute_method == 'trie' and self.__k_func is not None: |
|
|
|
def init_worker(trie_toshare): |
|
|
|
global G_trie |
|
|
|
G_trie = trie_toshare |
|
|
|
do_fun = self._wrapper_kernel_do_trie |
|
|
|
elif self.__compute_method != 'trie' and self.__k_func is not None: |
|
|
|
def init_worker(plist_toshare): |
|
|
|
global G_plist |
|
|
|
G_plist = plist_toshare |
|
|
|
do_fun = self._wrapper_kernel_do_naive |
|
|
|
else: |
|
|
|
def init_worker(plist_toshare): |
|
|
|
global G_plist |
|
|
|
G_plist = plist_toshare |
|
|
|
do_fun = self.__wrapper_kernel_do_kernelless # @todo: what is this? |
|
|
|
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, |
|
|
|
glbv=(all_paths,), n_jobs=self._n_jobs, verbose=self._verbose) |
|
|
|
|
|
|
|
return gram_matrix |
|
|
|
|
|
|
|
|
|
|
|
def _compute_kernel_list_series(self, g1, g_list): |
|
|
|
self.__add_dummy_labels(g_list + [g1]) |
|
|
|
|
|
|
|
if self._verbose >= 2: |
|
|
|
iterator_ps = tqdm(g_list, desc='getting paths', file=sys.stdout) |
|
|
|
iterator_kernel = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout) |
|
|
|
else: |
|
|
|
iterator_ps = g_list |
|
|
|
iterator_kernel = range(len(g_list)) |
|
|
|
|
|
|
|
kernel_list = [None] * len(g_list) |
|
|
|
|
|
|
|
if self.__compute_method == 'trie': |
|
|
|
paths_g1 = self.__find_all_path_as_trie(g1) |
|
|
|
paths_g_list = [self.__find_all_path_as_trie(g) for g in iterator_ps] |
|
|
|
for i in iterator_kernel: |
|
|
|
kernel = self.__kernel_do_trie(paths_g1, paths_g_list[i]) |
|
|
|
kernel_list[i] = kernel |
|
|
|
else: |
|
|
|
paths_g1 = self.__find_all_paths_until_length(g1) |
|
|
|
paths_g_list = [self.__find_all_paths_until_length(g) for g in iterator_ps] |
|
|
|
for i in iterator_kernel: |
|
|
|
kernel = self.__kernel_do_naive(paths_g1, paths_g_list[i]) |
|
|
|
kernel_list[i] = kernel |
|
|
|
|
|
|
|
return kernel_list |
|
|
|
|
|
|
|
|
|
|
|
def _compute_kernel_list_imap_unordered(self, g1, g_list): |
|
|
|
self.__add_dummy_labels(g_list + [g1]) |
|
|
|
|
|
|
|
# get all paths of all graphs before calculating kernels to save time, |
|
|
|
# but this may cost a lot of memory for large datasets. |
|
|
|
pool = Pool(self._n_jobs) |
|
|
|
itr = zip(g_list, range(0, len(g_list))) |
|
|
|
if len(g_list) < 100 * self._n_jobs: |
|
|
|
chunksize = int(len(g_list) / self._n_jobs) + 1 |
|
|
|
else: |
|
|
|
chunksize = 100 |
|
|
|
paths_g_list = [[] for _ in range(len(g_list))] |
|
|
|
if self.__compute_method == 'trie' and self.__k_func is not None: |
|
|
|
paths_g1 = self.__find_all_path_as_trie(g1) |
|
|
|
get_ps_fun = self._wrapper_find_all_path_as_trie |
|
|
|
elif self.__compute_method != 'trie' and self.__k_func is not None: |
|
|
|
paths_g1 = self.__find_all_paths_until_length(g1) |
|
|
|
get_ps_fun = partial(self._wrapper_find_all_paths_until_length, True) |
|
|
|
else: |
|
|
|
paths_g1 = self.__find_all_paths_until_length(g1) |
|
|
|
get_ps_fun = partial(self._wrapper_find_all_paths_until_length, False) |
|
|
|
if self._verbose >= 2: |
|
|
|
iterator = tqdm(pool.imap_unordered(get_ps_fun, itr, chunksize), |
|
|
|
desc='getting paths', file=sys.stdout) |
|
|
|
else: |
|
|
|
iterator = pool.imap_unordered(get_ps_fun, itr, chunksize) |
|
|
|
for i, ps in iterator: |
|
|
|
paths_g_list[i] = ps |
|
|
|
pool.close() |
|
|
|
pool.join() |
|
|
|
|
|
|
|
# compute kernel list. |
|
|
|
kernel_list = [None] * len(g_list) |
|
|
|
|
|
|
|
def init_worker(p1_toshare, plist_toshare): |
|
|
|
global G_p1, G_plist |
|
|
|
G_p1 = p1_toshare |
|
|
|
G_plist = plist_toshare |
|
|
|
do_fun = self._wrapper_kernel_list_do |
|
|
|
def func_assign(result, var_to_assign): |
|
|
|
var_to_assign[result[0]] = result[1] |
|
|
|
itr = range(len(g_list)) |
|
|
|
len_itr = len(g_list) |
|
|
|
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, |
|
|
|
init_worker=init_worker, glbv=(paths_g1, paths_g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose) |
|
|
|
|
|
|
|
return kernel_list |
|
|
|
|
|
|
|
|
|
|
|
def _wrapper_kernel_list_do(self, itr): |
|
|
|
if self.__compute_method == 'trie' and self.__k_func is not None: |
|
|
|
return itr, self.__kernel_do_trie(G_p1, G_plist[itr]) |
|
|
|
elif self.__compute_method != 'trie' and self.__k_func is not None: |
|
|
|
return itr, self.__kernel_do_naive(G_p1, G_plist[itr]) |
|
|
|
else: |
|
|
|
return itr, self.__kernel_do_kernelless(G_p1, G_plist[itr]) |
|
|
|
|
|
|
|
|
|
|
|
def _compute_single_kernel_series(self, g1, g2): |
|
|
|
self.__add_dummy_labels([g1] + [g2]) |
|
|
|
if self.__compute_method == 'trie': |
|
|
|
paths_g1 = self.__find_all_path_as_trie(g1) |
|
|
|
paths_g2 = self.__find_all_path_as_trie(g2) |
|
|
|
kernel = self.__kernel_do_trie(paths_g1, paths_g2) |
|
|
|
else: |
|
|
|
paths_g1 = self.__find_all_paths_until_length(g1) |
|
|
|
paths_g2 = self.__find_all_paths_until_length(g2) |
|
|
|
kernel = self.__kernel_do_naive(paths_g1, paths_g2) |
|
|
|
return kernel |
|
|
|
|
|
|
|
|
|
|
|
def __kernel_do_trie(self, trie1, trie2): |
|
|
|
"""Calculate path graph kernels up to depth d between 2 graphs using trie. |
|
|
|
|
|
|
|
Parameters |
|
|
|
---------- |
|
|
|
trie1, trie2 : list |
|
|
|
Tries that contains all paths in 2 graphs. |
|
|
|
k_func : function |
|
|
|
A kernel function applied using different notions of fingerprint |
|
|
|
similarity. |
|
|
|
|
|
|
|
Return |
|
|
|
------ |
|
|
|
kernel : float |
|
|
|
Path kernel up to h between 2 graphs. |
|
|
|
""" |
|
|
|
if self.__k_func == 'tanimoto': |
|
|
|
# traverse all paths in graph1 and search them in graph2. Deep-first |
|
|
|
# search is applied. |
|
|
|
def traverseTrie1t(root, trie2, setlist, pcurrent=[]): |
|
|
|
for key, node in root['children'].items(): |
|
|
|
pcurrent.append(key) |
|
|
|
if node['isEndOfWord']: |
|
|
|
setlist[1] += 1 |
|
|
|
count2 = trie2.searchWord(pcurrent) |
|
|
|
if count2 != 0: |
|
|
|
setlist[0] += 1 |
|
|
|
if node['children'] != {}: |
|
|
|
traverseTrie1t(node, trie2, setlist, pcurrent) |
|
|
|
else: |
|
|
|
del pcurrent[-1] |
|
|
|
if pcurrent != []: |
|
|
|
del pcurrent[-1] |
|
|
|
|
|
|
|
|
|
|
|
# traverse all paths in graph2 and find out those that are not in |
|
|
|
# graph1. Deep-first search is applied. |
|
|
|
def traverseTrie2t(root, trie1, setlist, pcurrent=[]): |
|
|
|
for key, node in root['children'].items(): |
|
|
|
pcurrent.append(key) |
|
|
|
if node['isEndOfWord']: |
|
|
|
# print(node['count']) |
|
|
|
count1 = trie1.searchWord(pcurrent) |
|
|
|
if count1 == 0: |
|
|
|
setlist[1] += 1 |
|
|
|
if node['children'] != {}: |
|
|
|
traverseTrie2t(node, trie1, setlist, pcurrent) |
|
|
|
else: |
|
|
|
del pcurrent[-1] |
|
|
|
if pcurrent != []: |
|
|
|
del pcurrent[-1] |
|
|
|
|
|
|
|
setlist = [0, 0] # intersection and union of path sets of g1, g2. |
|
|
|
# print(trie1.root) |
|
|
|
# print(trie2.root) |
|
|
|
traverseTrie1t(trie1.root, trie2, setlist) |
|
|
|
# print(setlist) |
|
|
|
traverseTrie2t(trie2.root, trie1, setlist) |
|
|
|
# print(setlist) |
|
|
|
kernel = setlist[0] / setlist[1] |
|
|
|
|
|
|
|
elif self.__k_func == 'MinMax': # MinMax kernel |
|
|
|
# traverse all paths in graph1 and search them in graph2. Deep-first |
|
|
|
# search is applied. |
|
|
|
def traverseTrie1m(root, trie2, sumlist, pcurrent=[]): |
|
|
|
for key, node in root['children'].items(): |
|
|
|
pcurrent.append(key) |
|
|
|
if node['isEndOfWord']: |
|
|
|
# print(node['count']) |
|
|
|
count1 = node['count'] |
|
|
|
count2 = trie2.searchWord(pcurrent) |
|
|
|
sumlist[0] += min(count1, count2) |
|
|
|
sumlist[1] += max(count1, count2) |
|
|
|
if node['children'] != {}: |
|
|
|
traverseTrie1m(node, trie2, sumlist, pcurrent) |
|
|
|
else: |
|
|
|
del pcurrent[-1] |
|
|
|
if pcurrent != []: |
|
|
|
del pcurrent[-1] |
|
|
|
|
|
|
|
# traverse all paths in graph2 and find out those that are not in |
|
|
|
# graph1. Deep-first search is applied. |
|
|
|
def traverseTrie2m(root, trie1, sumlist, pcurrent=[]): |
|
|
|
for key, node in root['children'].items(): |
|
|
|
pcurrent.append(key) |
|
|
|
if node['isEndOfWord']: |
|
|
|
# print(node['count']) |
|
|
|
count1 = trie1.searchWord(pcurrent) |
|
|
|
if count1 == 0: |
|
|
|
sumlist[1] += node['count'] |
|
|
|
if node['children'] != {}: |
|
|
|
traverseTrie2m(node, trie1, sumlist, pcurrent) |
|
|
|
else: |
|
|
|
del pcurrent[-1] |
|
|
|
if pcurrent != []: |
|
|
|
del pcurrent[-1] |
|
|
|
|
|
|
|
sumlist = [0, 0] # sum of mins and sum of maxs |
|
|
|
# print(trie1.root) |
|
|
|
# print(trie2.root) |
|
|
|
traverseTrie1m(trie1.root, trie2, sumlist) |
|
|
|
# print(sumlist) |
|
|
|
traverseTrie2m(trie2.root, trie1, sumlist) |
|
|
|
# print(sumlist) |
|
|
|
kernel = sumlist[0] / sumlist[1] |
|
|
|
else: |
|
|
|
raise Exception('The given "k_func" cannot be recognized. Possible choices include: "tanimoto", "MinMax".') |
|
|
|
|
|
|
|
return kernel |
|
|
|
|
|
|
|
|
|
|
|
def _wrapper_kernel_do_trie(self, itr): |
|
|
|
i = itr[0] |
|
|
|
j = itr[1] |
|
|
|
return i, j, self.__kernel_do_trie(G_trie[i], G_trie[j]) |
|
|
|
|
|
|
|
|
|
|
|
def __kernel_do_naive(self, paths1, paths2): |
|
|
|
"""Calculate path graph kernels up to depth d between 2 graphs naively. |
|
|
|
|
|
|
|
Parameters |
|
|
|
---------- |
|
|
|
paths_list : list of list |
|
|
|
List of list of paths in all graphs, where for unlabeled graphs, each |
|
|
|
path is represented by a list of nodes; while for labeled graphs, each |
|
|
|
path is represented by a string consists of labels of nodes and/or |
|
|
|
edges on that path. |
|
|
|
k_func : function |
|
|
|
A kernel function applied using different notions of fingerprint |
|
|
|
similarity. |
|
|
|
|
|
|
|
Return |
|
|
|
------ |
|
|
|
kernel : float |
|
|
|
Path kernel up to h between 2 graphs. |
|
|
|
""" |
|
|
|
all_paths = list(set(paths1 + paths2)) |
|
|
|
|
|
|
|
if self.__k_func == 'tanimoto': |
|
|
|
length_union = len(set(paths1 + paths2)) |
|
|
|
kernel = (len(set(paths1)) + len(set(paths2)) - |
|
|
|
length_union) / length_union |
|
|
|
# vector1 = [(1 if path in paths1 else 0) for path in all_paths] |
|
|
|
# vector2 = [(1 if path in paths2 else 0) for path in all_paths] |
|
|
|
# kernel_uv = np.dot(vector1, vector2) |
|
|
|
# kernel = kernel_uv / (len(set(paths1)) + len(set(paths2)) - kernel_uv) |
|
|
|
|
|
|
|
elif self.__k_func == 'MinMax': # MinMax kernel |
|
|
|
path_count1 = Counter(paths1) |
|
|
|
path_count2 = Counter(paths2) |
|
|
|
vector1 = [(path_count1[key] if (key in path_count1.keys()) else 0) |
|
|
|
for key in all_paths] |
|
|
|
vector2 = [(path_count2[key] if (key in path_count2.keys()) else 0) |
|
|
|
for key in all_paths] |
|
|
|
kernel = np.sum(np.minimum(vector1, vector2)) / \ |
|
|
|
np.sum(np.maximum(vector1, vector2)) |
|
|
|
|
|
|
|
elif self.__k_func is None: # no sub-kernel used; compare paths directly. |
|
|
|
path_count1 = Counter(paths1) |
|
|
|
path_count2 = Counter(paths2) |
|
|
|
vector1 = [(path_count1[key] if (key in path_count1.keys()) else 0) |
|
|
|
for key in all_paths] |
|
|
|
vector2 = [(path_count2[key] if (key in path_count2.keys()) else 0) |
|
|
|
for key in all_paths] |
|
|
|
kernel = np.dot(vector1, vector2) |
|
|
|
|
|
|
|
else: |
|
|
|
raise Exception('The given "k_func" cannot be recognized. Possible choices include: "tanimoto", "MinMax" and None.') |
|
|
|
|
|
|
|
return kernel |
|
|
|
|
|
|
|
|
|
|
|
def _wrapper_kernel_do_naive(self, itr): |
|
|
|
i = itr[0] |
|
|
|
j = itr[1] |
|
|
|
return i, j, self.__kernel_do_naive(G_plist[i], G_plist[j]) |
|
|
|
|
|
|
|
|
|
|
|
def __find_all_path_as_trie(self, G): |
|
|
|
# all_path = find_all_paths_until_length(G, length, ds_attrs, |
|
|
|
# node_label=node_label, |
|
|
|
# edge_label=edge_label) |
|
|
|
# ptrie = Trie() |
|
|
|
# for path in all_path: |
|
|
|
# ptrie.insertWord(path) |
|
|
|
|
|
|
|
# ptrie = Trie() |
|
|
|
# path_l = [[n] for n in G.nodes] # paths of length l |
|
|
|
# path_l_str = paths2labelseqs(path_l, G, ds_attrs, node_label, edge_label) |
|
|
|
# for p in path_l_str: |
|
|
|
# ptrie.insertWord(p) |
|
|
|
# for l in range(1, length + 1): |
|
|
|
# path_lplus1 = [] |
|
|
|
# for path in path_l: |
|
|
|
# for neighbor in G[path[-1]]: |
|
|
|
# if neighbor not in path: |
|
|
|
# tmp = path + [neighbor] |
|
|
|
## if tmp[::-1] not in path_lplus1: |
|
|
|
# path_lplus1.append(tmp) |
|
|
|
# path_l = path_lplus1[:] |
|
|
|
# # consider labels |
|
|
|
# path_l_str = paths2labelseqs(path_l, G, ds_attrs, node_label, edge_label) |
|
|
|
# for p in path_l_str: |
|
|
|
# ptrie.insertWord(p) |
|
|
|
# |
|
|
|
# print(time.time() - time1) |
|
|
|
# print(ptrie.root) |
|
|
|
# print() |
|
|
|
|
|
|
|
|
|
|
|
# traverse all paths up to length h in a graph and construct a trie with |
|
|
|
# them. Deep-first search is applied. Notice the reverse of each path is |
|
|
|
# also stored to the trie. |
|
|
|
def traverseGraph(root, ptrie, G, pcurrent=[]): |
|
|
|
if len(pcurrent) < self.__depth + 1: |
|
|
|
for neighbor in G[root]: |
|
|
|
if neighbor not in pcurrent: |
|
|
|
pcurrent.append(neighbor) |
|
|
|
plstr = self.__paths2labelseqs([pcurrent], G) |
|
|
|
ptrie.insertWord(plstr[0]) |
|
|
|
traverseGraph(neighbor, ptrie, G, pcurrent) |
|
|
|
del pcurrent[-1] |
|
|
|
|
|
|
|
|
|
|
|
ptrie = Trie() |
|
|
|
path_l = [[n] for n in G.nodes] # paths of length l |
|
|
|
path_l_str = self.__paths2labelseqs(path_l, G) |
|
|
|
for p in path_l_str: |
|
|
|
ptrie.insertWord(p) |
|
|
|
for n in G.nodes: |
|
|
|
traverseGraph(n, ptrie, G, pcurrent=[n]) |
|
|
|
|
|
|
|
|
|
|
|
# def traverseGraph(root, all_paths, length, G, ds_attrs, node_label, edge_label, |
|
|
|
# pcurrent=[]): |
|
|
|
# if len(pcurrent) < length + 1: |
|
|
|
# for neighbor in G[root]: |
|
|
|
# if neighbor not in pcurrent: |
|
|
|
# pcurrent.append(neighbor) |
|
|
|
# plstr = paths2labelseqs([pcurrent], G, ds_attrs, |
|
|
|
# node_label, edge_label) |
|
|
|
# all_paths.append(pcurrent[:]) |
|
|
|
# traverseGraph(neighbor, all_paths, length, G, ds_attrs, |
|
|
|
# node_label, edge_label, pcurrent) |
|
|
|
# del pcurrent[-1] |
|
|
|
# |
|
|
|
# |
|
|
|
# path_l = [[n] for n in G.nodes] # paths of length l |
|
|
|
# all_paths = path_l[:] |
|
|
|
# path_l_str = paths2labelseqs(path_l, G, ds_attrs, node_label, edge_label) |
|
|
|
## for p in path_l_str: |
|
|
|
## ptrie.insertWord(p) |
|
|
|
# for n in G.nodes: |
|
|
|
# traverseGraph(n, all_paths, length, G, ds_attrs, node_label, edge_label, |
|
|
|
# pcurrent=[n]) |
|
|
|
|
|
|
|
# print(ptrie.root) |
|
|
|
return ptrie |
|
|
|
|
|
|
|
|
|
|
|
def _wrapper_find_all_path_as_trie(self, itr_item): |
|
|
|
g = itr_item[0] |
|
|
|
i = itr_item[1] |
|
|
|
return i, self.__find_all_path_as_trie(g) |
|
|
|
|
|
|
|
|
|
|
|
# @todo: (can be removed maybe) this method find paths repetively, it could be faster. |
|
|
|
def __find_all_paths_until_length(self, G, tolabelseqs=True): |
|
|
|
"""Find all paths no longer than a certain maximum length in a graph. A |
|
|
|
recursive depth first search is applied. |
|
|
|
|
|
|
|
Parameters |
|
|
|
---------- |
|
|
|
G : NetworkX graphs |
|
|
|
The graph in which paths are searched. |
|
|
|
length : integer |
|
|
|
The maximum length of paths. |
|
|
|
ds_attrs: dict |
|
|
|
Dataset attributes. |
|
|
|
node_label : string |
|
|
|
Node attribute used as label. The default node label is atom. |
|
|
|
edge_label : string |
|
|
|
Edge attribute used as label. The default edge label is bond_type. |
|
|
|
|
|
|
|
Return |
|
|
|
------ |
|
|
|
path : list |
|
|
|
List of paths retrieved, where for unlabeled graphs, each path is |
|
|
|
represented by a list of nodes; while for labeled graphs, each path is |
|
|
|
represented by a list of strings consists of labels of nodes and/or |
|
|
|
edges on that path. |
|
|
|
""" |
|
|
|
# path_l = [tuple([n]) for n in G.nodes] # paths of length l |
|
|
|
# all_paths = path_l[:] |
|
|
|
# for l in range(1, self.__depth + 1): |
|
|
|
# path_l_new = [] |
|
|
|
# for path in path_l: |
|
|
|
# for neighbor in G[path[-1]]: |
|
|
|
# if len(path) < 2 or neighbor != path[-2]: |
|
|
|
# tmp = path + (neighbor, ) |
|
|
|
# if tuple(tmp[::-1]) not in path_l_new: |
|
|
|
# path_l_new.append(tuple(tmp)) |
|
|
|
|
|
|
|
# all_paths += path_l_new |
|
|
|
# path_l = path_l_new[:] |
|
|
|
|
|
|
|
path_l = [[n] for n in G.nodes] # paths of length l |
|
|
|
all_paths = [p.copy() for p in path_l] |
|
|
|
for l in range(1, self.__depth + 1): |
|
|
|
path_lplus1 = [] |
|
|
|
for path in path_l: |
|
|
|
for neighbor in G[path[-1]]: |
|
|
|
if neighbor not in path: |
|
|
|
tmp = path + [neighbor] |
|
|
|
# if tmp[::-1] not in path_lplus1: |
|
|
|
path_lplus1.append(tmp) |
|
|
|
|
|
|
|
all_paths += path_lplus1 |
|
|
|
path_l = [p.copy() for p in path_lplus1] |
|
|
|
|
|
|
|
# for i in range(0, self.__depth + 1): |
|
|
|
# new_paths = find_all_paths(G, i) |
|
|
|
# if new_paths == []: |
|
|
|
# break |
|
|
|
# all_paths.extend(new_paths) |
|
|
|
|
|
|
|
# consider labels |
|
|
|
# print(paths2labelseqs(all_paths, G, ds_attrs, node_label, edge_label)) |
|
|
|
# print() |
|
|
|
return (self.__paths2labelseqs(all_paths, G) if tolabelseqs else all_paths) |
|
|
|
|
|
|
|
|
|
|
|
def _wrapper_find_all_paths_until_length(self, tolabelseqs, itr_item): |
|
|
|
g = itr_item[0] |
|
|
|
i = itr_item[1] |
|
|
|
return i, self.__find_all_paths_until_length(g, tolabelseqs=tolabelseqs) |
|
|
|
|
|
|
|
|
|
|
|
def __paths2labelseqs(self, plist, G): |
|
|
|
if len(self.__node_labels) > 0: |
|
|
|
if len(self.__edge_labels) > 0: |
|
|
|
path_strs = [] |
|
|
|
for path in plist: |
|
|
|
pths_tmp = [] |
|
|
|
for idx, node in enumerate(path[:-1]): |
|
|
|
pths_tmp.append(tuple(G.nodes[node][nl] for nl in self.__node_labels)) |
|
|
|
pths_tmp.append(tuple(G[node][path[idx + 1]][el] for el in self.__edge_labels)) |
|
|
|
pths_tmp.append(tuple(G.nodes[path[-1]][nl] for nl in self.__node_labels)) |
|
|
|
path_strs.append(tuple(pths_tmp)) |
|
|
|
else: |
|
|
|
path_strs = [] |
|
|
|
for path in plist: |
|
|
|
pths_tmp = [] |
|
|
|
for node in path: |
|
|
|
pths_tmp.append(tuple(G.nodes[node][nl] for nl in self.__node_labels)) |
|
|
|
path_strs.append(tuple(pths_tmp)) |
|
|
|
return path_strs |
|
|
|
else: |
|
|
|
if len(self.__edge_labels) > 0: |
|
|
|
path_strs = [] |
|
|
|
for path in plist: |
|
|
|
if len(path) == 1: |
|
|
|
path_strs.append(tuple()) |
|
|
|
else: |
|
|
|
pths_tmp = [] |
|
|
|
for idx, node in enumerate(path[:-1]): |
|
|
|
pths_tmp.append(tuple(G[node][path[idx + 1]][el] for el in self.__edge_labels)) |
|
|
|
path_strs.append(tuple(pths_tmp)) |
|
|
|
return path_strs |
|
|
|
else: |
|
|
|
return [tuple(['0' for node in path]) for path in plist] |
|
|
|
# return [tuple([len(path)]) for path in all_paths] |
|
|
|
|
|
|
|
|
|
|
|
def __add_dummy_labels(self, Gn): |
|
|
|
if self.__k_func is not None: |
|
|
|
if len(self.__node_labels) == 0 or (len(self.__node_labels) == 1 and self.__node_labels[0] == SpecialLabel.DUMMY): |
|
|
|
for i in range(len(Gn)): |
|
|
|
nx.set_node_attributes(Gn[i], '0', SpecialLabel.DUMMY) |
|
|
|
self.__node_labels = [SpecialLabel.DUMMY] |
|
|
|
if len(self.__edge_labels) == 0 or (len(self.__edge_labels) == 1 and self.__edge_labels[0] == SpecialLabel.DUMMY): |
|
|
|
for i in range(len(Gn)): |
|
|
|
nx.set_edge_attributes(Gn[i], '0', SpecialLabel.DUMMY) |
|
|
|
self.__edge_labels = [SpecialLabel.DUMMY] |