|
|
@@ -0,0 +1,194 @@ |
|
|
|
import libsvm.*; |
|
|
|
import java.io.*; |
|
|
|
import java.util.*; |
|
|
|
|
|
|
|
class svm_predict { |
|
|
|
private static svm_print_interface svm_print_null = new svm_print_interface() |
|
|
|
{ |
|
|
|
public void print(String s) {} |
|
|
|
}; |
|
|
|
|
|
|
|
private static svm_print_interface svm_print_stdout = new svm_print_interface() |
|
|
|
{ |
|
|
|
public void print(String s) |
|
|
|
{ |
|
|
|
System.out.print(s); |
|
|
|
} |
|
|
|
}; |
|
|
|
|
|
|
|
private static svm_print_interface svm_print_string = svm_print_stdout; |
|
|
|
|
|
|
|
static void info(String s) |
|
|
|
{ |
|
|
|
svm_print_string.print(s); |
|
|
|
} |
|
|
|
|
|
|
|
private static double atof(String s) |
|
|
|
{ |
|
|
|
return Double.valueOf(s).doubleValue(); |
|
|
|
} |
|
|
|
|
|
|
|
private static int atoi(String s) |
|
|
|
{ |
|
|
|
return Integer.parseInt(s); |
|
|
|
} |
|
|
|
|
|
|
|
private static void predict(BufferedReader input, DataOutputStream output, svm_model model, int predict_probability) throws IOException |
|
|
|
{ |
|
|
|
int correct = 0; |
|
|
|
int total = 0; |
|
|
|
double error = 0; |
|
|
|
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0; |
|
|
|
|
|
|
|
int svm_type=svm.svm_get_svm_type(model); |
|
|
|
int nr_class=svm.svm_get_nr_class(model); |
|
|
|
double[] prob_estimates=null; |
|
|
|
|
|
|
|
if(predict_probability == 1) |
|
|
|
{ |
|
|
|
if(svm_type == svm_parameter.EPSILON_SVR || |
|
|
|
svm_type == svm_parameter.NU_SVR) |
|
|
|
{ |
|
|
|
svm_predict.info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma="+svm.svm_get_svr_probability(model)+"\n"); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
int[] labels=new int[nr_class]; |
|
|
|
svm.svm_get_labels(model,labels); |
|
|
|
prob_estimates = new double[nr_class]; |
|
|
|
output.writeBytes("labels"); |
|
|
|
for(int j=0;j<nr_class;j++) |
|
|
|
output.writeBytes(" "+labels[j]); |
|
|
|
output.writeBytes("\n"); |
|
|
|
} |
|
|
|
} |
|
|
|
while(true) |
|
|
|
{ |
|
|
|
String line = input.readLine(); |
|
|
|
if(line == null) break; |
|
|
|
|
|
|
|
StringTokenizer st = new StringTokenizer(line," \t\n\r\f:"); |
|
|
|
|
|
|
|
double target = atof(st.nextToken()); |
|
|
|
int m = st.countTokens()/2; |
|
|
|
svm_node[] x = new svm_node[m]; |
|
|
|
for(int j=0;j<m;j++) |
|
|
|
{ |
|
|
|
x[j] = new svm_node(); |
|
|
|
x[j].index = atoi(st.nextToken()); |
|
|
|
x[j].value = atof(st.nextToken()); |
|
|
|
} |
|
|
|
|
|
|
|
double v; |
|
|
|
if (predict_probability==1 && (svm_type==svm_parameter.C_SVC || svm_type==svm_parameter.NU_SVC)) |
|
|
|
{ |
|
|
|
v = svm.svm_predict_probability(model,x,prob_estimates); |
|
|
|
output.writeBytes(v+" "); |
|
|
|
for(int j=0;j<nr_class;j++) |
|
|
|
output.writeBytes(prob_estimates[j]+" "); |
|
|
|
output.writeBytes("\n"); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
v = svm.svm_predict(model,x); |
|
|
|
output.writeBytes(v+"\n"); |
|
|
|
} |
|
|
|
|
|
|
|
if(v == target) |
|
|
|
++correct; |
|
|
|
error += (v-target)*(v-target); |
|
|
|
sumv += v; |
|
|
|
sumy += target; |
|
|
|
sumvv += v*v; |
|
|
|
sumyy += target*target; |
|
|
|
sumvy += v*target; |
|
|
|
++total; |
|
|
|
} |
|
|
|
if(svm_type == svm_parameter.EPSILON_SVR || |
|
|
|
svm_type == svm_parameter.NU_SVR) |
|
|
|
{ |
|
|
|
svm_predict.info("Mean squared error = "+error/total+" (regression)\n"); |
|
|
|
svm_predict.info("Squared correlation coefficient = "+ |
|
|
|
((total*sumvy-sumv*sumy)*(total*sumvy-sumv*sumy))/ |
|
|
|
((total*sumvv-sumv*sumv)*(total*sumyy-sumy*sumy))+ |
|
|
|
" (regression)\n"); |
|
|
|
} |
|
|
|
else |
|
|
|
svm_predict.info("Accuracy = "+(double)correct/total*100+ |
|
|
|
"% ("+correct+"/"+total+") (classification)\n"); |
|
|
|
} |
|
|
|
|
|
|
|
private static void exit_with_help() |
|
|
|
{ |
|
|
|
System.err.print("usage: svm_predict [options] test_file model_file output_file\n" |
|
|
|
+"options:\n" |
|
|
|
+"-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yet\n" |
|
|
|
+"-q : quiet mode (no outputs)\n"); |
|
|
|
System.exit(1); |
|
|
|
} |
|
|
|
|
|
|
|
public static void main(String argv[]) throws IOException |
|
|
|
{ |
|
|
|
int i, predict_probability=0; |
|
|
|
svm_print_string = svm_print_stdout; |
|
|
|
|
|
|
|
// parse options |
|
|
|
for(i=0;i<argv.length;i++) |
|
|
|
{ |
|
|
|
if(argv[i].charAt(0) != '-') break; |
|
|
|
++i; |
|
|
|
switch(argv[i-1].charAt(1)) |
|
|
|
{ |
|
|
|
case 'b': |
|
|
|
predict_probability = atoi(argv[i]); |
|
|
|
break; |
|
|
|
case 'q': |
|
|
|
svm_print_string = svm_print_null; |
|
|
|
i--; |
|
|
|
break; |
|
|
|
default: |
|
|
|
System.err.print("Unknown option: " + argv[i-1] + "\n"); |
|
|
|
exit_with_help(); |
|
|
|
} |
|
|
|
} |
|
|
|
if(i>=argv.length-2) |
|
|
|
exit_with_help(); |
|
|
|
try |
|
|
|
{ |
|
|
|
BufferedReader input = new BufferedReader(new FileReader(argv[i])); |
|
|
|
DataOutputStream output = new DataOutputStream(new BufferedOutputStream(new FileOutputStream(argv[i+2]))); |
|
|
|
svm_model model = svm.svm_load_model(argv[i+1]); |
|
|
|
if (model == null) |
|
|
|
{ |
|
|
|
System.err.print("can't open model file "+argv[i+1]+"\n"); |
|
|
|
System.exit(1); |
|
|
|
} |
|
|
|
if(predict_probability == 1) |
|
|
|
{ |
|
|
|
if(svm.svm_check_probability_model(model)==0) |
|
|
|
{ |
|
|
|
System.err.print("Model does not support probabiliy estimates\n"); |
|
|
|
System.exit(1); |
|
|
|
} |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
if(svm.svm_check_probability_model(model)!=0) |
|
|
|
{ |
|
|
|
svm_predict.info("Model supports probability estimates, but disabled in prediction.\n"); |
|
|
|
} |
|
|
|
} |
|
|
|
predict(input,output,model,predict_probability); |
|
|
|
input.close(); |
|
|
|
output.close(); |
|
|
|
} |
|
|
|
catch(FileNotFoundException e) |
|
|
|
{ |
|
|
|
exit_with_help(); |
|
|
|
} |
|
|
|
catch(ArrayIndexOutOfBoundsException e) |
|
|
|
{ |
|
|
|
exit_with_help(); |
|
|
|
} |
|
|
|
} |
|
|
|
} |