diff --git a/lang/zh/gklearn/gedlib/lib/libsvm.3.22/README b/lang/zh/gklearn/gedlib/lib/libsvm.3.22/README new file mode 100644 index 0000000..5b32236 --- /dev/null +++ b/lang/zh/gklearn/gedlib/lib/libsvm.3.22/README @@ -0,0 +1,769 @@ +Libsvm is a simple, easy-to-use, and efficient software for SVM +classification and regression. It solves C-SVM classification, nu-SVM +classification, one-class-SVM, epsilon-SVM regression, and nu-SVM +regression. It also provides an automatic model selection tool for +C-SVM classification. This document explains the use of libsvm. + +Libsvm is available at +http://www.csie.ntu.edu.tw/~cjlin/libsvm +Please read the COPYRIGHT file before using libsvm. + +Table of Contents +================= + +- Quick Start +- Installation and Data Format +- `svm-train' Usage +- `svm-predict' Usage +- `svm-scale' Usage +- Tips on Practical Use +- Examples +- Precomputed Kernels +- Library Usage +- Java Version +- Building Windows Binaries +- Additional Tools: Sub-sampling, Parameter Selection, Format checking, etc. +- MATLAB/OCTAVE Interface +- Python Interface +- Additional Information + +Quick Start +=========== + +If you are new to SVM and if the data is not large, please go to +`tools' directory and use easy.py after installation. It does +everything automatic -- from data scaling to parameter selection. + +Usage: easy.py training_file [testing_file] + +More information about parameter selection can be found in +`tools/README.' + +Installation and Data Format +============================ + +On Unix systems, type `make' to build the `svm-train' and `svm-predict' +programs. Run them without arguments to show the usages of them. + +On other systems, consult `Makefile' to build them (e.g., see +'Building Windows binaries' in this file) or use the pre-built +binaries (Windows binaries are in the directory `windows'). + +The format of training and testing data file is: + +