Browse Source

Test: if sp / ssp kernel yield same results if the fcsp method is turned off.

v0.2.x
jajupmochi 4 years ago
parent
commit
3588608356
1 changed files with 14 additions and 11 deletions
  1. +14
    -11
      gklearn/tests/test_graph_kernels.py

+ 14
- 11
gklearn/tests/test_graph_kernels.py View File

@@ -19,6 +19,7 @@ def chooseDataset(ds_name):
dataset.trim_dataset(edge_required=False)
irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']}
dataset.remove_labels(**irrelevant_labels)
dataset.cut_graphs(range(1, 10))
# node symbolic labels.
elif ds_name == 'Acyclic':
dataset.load_predefined_dataset(ds_name)
@@ -337,11 +338,11 @@ def test_ShortestPath(ds_name, parallel):
kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1],
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)

assert np.array_equal(gram_matrix1, gram_matrix2)

except Exception as exception:
assert False, exception

assert np.array_equal(gram_matrix1, gram_matrix2)


#@pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint'])
@pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint', 'Fingerprint_edge', 'Cuneiform'])
@@ -367,11 +368,11 @@ def test_StructuralSP(ds_name, parallel):
node_kernels=sub_kernels,
edge_kernels=sub_kernels)
gram_matrix1, run_time = graph_kernel.compute(dataset.graphs,
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True, normalize=False)
kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:],
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1],
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)

graph_kernel = StructuralSP(node_labels=dataset.node_labels,
edge_labels=dataset.edge_labels,
@@ -382,17 +383,17 @@ def test_StructuralSP(ds_name, parallel):
node_kernels=sub_kernels,
edge_kernels=sub_kernels)
gram_matrix2, run_time = graph_kernel.compute(dataset.graphs,
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True, normalize=False)
kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:],
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)
kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1],
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)

assert np.array_equal(gram_matrix1, gram_matrix2)
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True)

except Exception as exception:
assert False, exception

assert np.array_equal(gram_matrix1, gram_matrix2)


@pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS'])
@pytest.mark.parametrize('parallel', ['imap_unordered', None])
@@ -477,8 +478,10 @@ def test_WLSubtree(ds_name, parallel):
if __name__ == "__main__":
test_list_graph_kernels()
# test_spkernel('Alkane', 'imap_unordered')
# test_ShortestPath('Alkane', 'imap_unordered')
# test_StructuralSP('Fingerprint_edge', 'imap_unordered')
test_StructuralSP('Acyclic', 'imap_unordered')
# test_StructuralSP('Alkane', None)
# test_StructuralSP('Cuneiform', None)
# test_WLSubtree('Acyclic', 'imap_unordered')
# test_RandomWalk('Acyclic', 'sylvester', None, 'imap_unordered')
# test_RandomWalk('Acyclic', 'conjugate', None, 'imap_unordered')


Loading…
Cancel
Save