Browse Source

New translations model_selection_old.py (Chinese Simplified)

l10n_v0.2.x
linlin 4 years ago
parent
commit
37db70ef80
1 changed files with 38 additions and 0 deletions
  1. +38
    -0
      lang/zh/gklearn/examples/kernels/model_selection_old.py

+ 38
- 0
lang/zh/gklearn/examples/kernels/model_selection_old.py View File

@@ -0,0 +1,38 @@
# -*- coding: utf-8 -*-
"""model_selection_old.ipynb

Automatically generated by Colaboratory.

Original file is located at
https://colab.research.google.com/drive/1uVkl7scNgEPrimX8ks6iEC5ijuhB8L_D

**This script demonstrates how to compute a graph kernel.**
---

**0. Install `graphkit-learn`.**
"""

"""**1. Perform model seletion and classification.**"""

from gklearn.utils import model_selection_for_precomputed_kernel
from gklearn.kernels import untilhpathkernel
import numpy as np

# Set parameters.
datafile = '../../../datasets/MUTAG/MUTAG_A.txt'
param_grid_precomputed = {'depth': np.linspace(1, 10, 10),
'k_func': ['MinMax', 'tanimoto'],
'compute_method': ['trie']}
param_grid = {'C': np.logspace(-10, 10, num=41, base=10)}

# Perform model selection and classification.
model_selection_for_precomputed_kernel(
datafile, # The path of dataset file.
untilhpathkernel, # The graph kernel used for estimation.
param_grid_precomputed, # The parameters used to compute gram matrices.
param_grid, # The penelty Parameters used for penelty items.
'classification', # Or 'regression'.
NUM_TRIALS=30, # The number of the random trials of the outer CV loop.
ds_name='MUTAG', # The name of the dataset.
n_jobs=1,
verbose=True)

Loading…
Cancel
Save