Browse Source

New translations marginalized.py (Chinese Simplified)

l10n_v0.2.x
linlin 4 years ago
parent
commit
3ae994ad6b
1 changed files with 11 additions and 11 deletions
  1. +11
    -11
      lang/zh/gklearn/kernels/marginalized.py

+ 11
- 11
lang/zh/gklearn/kernels/marginalized.py View File

@@ -59,7 +59,7 @@ class Marginalized(GraphKernel):
from itertools import combinations_with_replacement from itertools import combinations_with_replacement
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) itr = combinations_with_replacement(range(0, len(self._graphs)), 2)
if self._verbose >= 2: if self._verbose >= 2:
iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout)
iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout)
else: else:
iterator = itr iterator = itr
for i, j in iterator: for i, j in iterator:
@@ -119,7 +119,7 @@ class Marginalized(GraphKernel):
# compute kernel list. # compute kernel list.
kernel_list = [None] * len(g_list) kernel_list = [None] * len(g_list)
if self._verbose >= 2: if self._verbose >= 2:
iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout)
iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout)
else: else:
iterator = range(len(g_list)) iterator = range(len(g_list))
for i in iterator: for i in iterator:
@@ -165,7 +165,7 @@ class Marginalized(GraphKernel):
len_itr = len(g_list) len_itr = len(g_list)
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr,
init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered',
n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose)
n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose)
return kernel_list return kernel_list
@@ -184,12 +184,12 @@ class Marginalized(GraphKernel):
def __kernel_do(self, g1, g2): def __kernel_do(self, g1, g2):
"""Calculate marginalized graph kernel between 2 graphs.
"""Compute marginalized graph kernel between 2 graphs.
Parameters Parameters
---------- ----------
g1, g2 : NetworkX graphs g1, g2 : NetworkX graphs
2 graphs between which the kernel is calculated.
2 graphs between which the kernel is computed.
Return Return
------ ------
@@ -212,12 +212,12 @@ class Marginalized(GraphKernel):
# # matrix to save all the R_inf for all pairs of nodes # # matrix to save all the R_inf for all pairs of nodes
# R_inf = np.zeros([num_nodes_G1, num_nodes_G2]) # R_inf = np.zeros([num_nodes_G1, num_nodes_G2])
# #
# # calculate R_inf with a simple interative method
# # Compute R_inf with a simple interative method
# for i in range(1, n_iteration): # for i in range(1, n_iteration):
# R_inf_new = np.zeros([num_nodes_G1, num_nodes_G2]) # R_inf_new = np.zeros([num_nodes_G1, num_nodes_G2])
# R_inf_new.fill(r1) # R_inf_new.fill(r1)
# #
# # calculate R_inf for each pair of nodes
# # Compute R_inf for each pair of nodes
# for node1 in g1.nodes(data=True): # for node1 in g1.nodes(data=True):
# neighbor_n1 = g1[node1[0]] # neighbor_n1 = g1[node1[0]]
# # the transition probability distribution in the random walks # # the transition probability distribution in the random walks
@@ -243,7 +243,7 @@ class Marginalized(GraphKernel):
# neighbor2] # ref [1] equation (8) # neighbor2] # ref [1] equation (8)
# R_inf[:] = R_inf_new # R_inf[:] = R_inf_new
# #
# # add elements of R_inf up and calculate kernel
# # add elements of R_inf up and compute kernel
# for node1 in g1.nodes(data=True): # for node1 in g1.nodes(data=True):
# for node2 in g2.nodes(data=True): # for node2 in g2.nodes(data=True):
# s = p_init_G1 * p_init_G2 * deltakernel( # s = p_init_G1 * p_init_G2 * deltakernel(
@@ -288,11 +288,11 @@ class Marginalized(GraphKernel):
deltakernel(tuple(g1.nodes[neighbor1][nl] for nl in self.__node_labels), tuple(g2.nodes[neighbor2][nl] for nl in self.__node_labels)) * \ deltakernel(tuple(g1.nodes[neighbor1][nl] for nl in self.__node_labels), tuple(g2.nodes[neighbor2][nl] for nl in self.__node_labels)) * \
deltakernel(tuple(neighbor_n1[neighbor1][el] for el in self.__edge_labels), tuple(neighbor_n2[neighbor2][el] for el in self.__edge_labels)) deltakernel(tuple(neighbor_n1[neighbor1][el] for el in self.__edge_labels), tuple(neighbor_n2[neighbor2][el] for el in self.__edge_labels))
# calculate R_inf with a simple interative method
# Compute R_inf with a simple interative method
for i in range(2, self.__n_iteration + 1): for i in range(2, self.__n_iteration + 1):
R_inf_old = R_inf.copy() R_inf_old = R_inf.copy()
# calculate R_inf for each pair of nodes
# Compute R_inf for each pair of nodes
for node1 in g1.nodes(): for node1 in g1.nodes():
neighbor_n1 = g1[node1] neighbor_n1 = g1[node1]
# the transition probability distribution in the random walks # the transition probability distribution in the random walks
@@ -309,7 +309,7 @@ class Marginalized(GraphKernel):
(t_dict[(node1, node2, neighbor1, neighbor2)] * \ (t_dict[(node1, node2, neighbor1, neighbor2)] * \
R_inf_old[(neighbor1, neighbor2)]) # ref [1] equation (8) R_inf_old[(neighbor1, neighbor2)]) # ref [1] equation (8)
# add elements of R_inf up and calculate kernel
# add elements of R_inf up and compute kernel.
for (n1, n2), value in R_inf.items(): for (n1, n2), value in R_inf.items():
s = p_init_G1 * p_init_G2 * deltakernel(tuple(g1.nodes[n1][nl] for nl in self.__node_labels), tuple(g2.nodes[n2][nl] for nl in self.__node_labels)) s = p_init_G1 * p_init_G2 * deltakernel(tuple(g1.nodes[n1][nl] for nl in self.__node_labels), tuple(g2.nodes[n2][nl] for nl in self.__node_labels))
kernel += s * value # ref [1] equation (6) kernel += s * value # ref [1] equation (6)


Loading…
Cancel
Save