@@ -89,17 +89,17 @@ The docs of the library can be found [here](https://graphkit-learn.readthedocs.i
A demo of computing graph kernels can be found on [Google Colab](https://colab.research.google.com/drive/17Q2QCl9CAtDweGF8LiWnWoN2laeJqT0u?usp=sharing) and in the [`examples`](https://github.com/jajupmochi/graphkit-learn/blob/master/gklearn/examples/compute_graph_kernel.py) folder.
### Graph Edit Distances
### 2 Graph Edit Distances
### Graph preimage methods
### 3 Graph preimage methods
A demo of generating graph preimages can be found on [Google Colab](https://colab.research.google.com/drive/1PIDvHOcmiLEQ5Np3bgBDdu0kLOquOMQK?usp=sharing) and in the [`examples`](https://github.com/jajupmochi/graphkit-learn/blob/master/gklearn/examples/median_preimege_generator.py) folder.
### Interface to `GEDLIB`
### 4 Interface to `GEDLIB`
[`GEDLIB`](https://github.com/dbblumenthal/gedlib) is an easily extensible C++ library for (suboptimally) computing the graph edit distance between attributed graphs. [A Python interface](https://github.com/jajupmochi/graphkit-learn/tree/master/gklearn/gedlib) for `GEDLIB` is integrated in this library, based on [`gedlibpy`](https://github.com/Ryurin/gedlibpy) library.
### Computation optimization methods
### 5 Computation optimization methods
* Python’s `multiprocessing.Pool` module is applied to perform **parallelization** on the computations of all kernels as well as the model selection.
* **The Fast Computation of Shortest Path Kernel (FCSP) method** [8] is implemented in *the random walk kernel*, *the shortest path kernel*, as well as *the structural shortest path kernel* where FCSP is applied on both vertex and edge kernels.