Browse Source

New translations check_gm_gstsp.py (French)

l10n_v0.2.x
linlin 4 years ago
parent
commit
460641c8f8
1 changed files with 134 additions and 0 deletions
  1. +134
    -0
      lang/fr/notebooks/utils/check_gm_gstsp.py

+ 134
- 0
lang/fr/notebooks/utils/check_gm_gstsp.py View File

@@ -0,0 +1,134 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
compute gm with load_data.py and test them.
Created on Wed Sep 19 16:12:13 2018

@author: ljia
"""

"""Shortest-Path graph kernel.
Python implementation based on: "Shortest-path kernels on graphs", by
Borgwardt, K.M.; Kriegel, H.-P., in Data Mining, Fifth IEEE
International Conference on , vol., no., pp.8 pp.-, 27-30 Nov. 2005
doi: 10.1109/ICDM.2005.132
Author : Sandro Vega-Pons, Emanuele Olivetti
"""

import sys
sys.path.insert(0, "../../")
import numpy as np
import networkx as nx
from gklearn.utils.graphfiles import loadDataset
import matplotlib.pyplot as plt
from numpy.linalg import eig


class GK_SP:
"""
Shorthest path graph kernel.
"""

def compare(self, g_1, g_2, verbose=False):
"""Compute the kernel value (similarity) between two graphs.
Parameters
----------
g1 : networkx.Graph
First graph.
g2 : networkx.Graph
Second graph.
Returns
-------
k : The similarity value between g1 and g2.
"""
# Diagonal superior matrix of the floyd warshall shortest
# paths:
fwm1 = np.array(nx.floyd_warshall_numpy(g_1))
fwm1 = np.where(fwm1 == np.inf, 0, fwm1)
fwm1 = np.where(fwm1 == np.nan, 0, fwm1)
fwm1 = np.triu(fwm1, k=1)
bc1 = np.bincount(fwm1.reshape(-1).astype(int))

fwm2 = np.array(nx.floyd_warshall_numpy(g_2))
fwm2 = np.where(fwm2 == np.inf, 0, fwm2)
fwm2 = np.where(fwm2 == np.nan, 0, fwm2)
fwm2 = np.triu(fwm2, k=1)
bc2 = np.bincount(fwm2.reshape(-1).astype(int))

# Copy into arrays with the same length the non-zero shortests
# paths:
v1 = np.zeros(max(len(bc1), len(bc2)) - 1)
v1[range(0, len(bc1)-1)] = bc1[1:]

v2 = np.zeros(max(len(bc1), len(bc2)) - 1)
v2[range(0, len(bc2)-1)] = bc2[1:]

return np.sum(v1 * v2)

def compare_normalized(self, g_1, g_2, verbose=False):
"""Compute the normalized kernel value between two graphs.
A normalized version of the kernel is given by the equation:
k_norm(g1, g2) = k(g1, g2) / sqrt(k(g1,g1) * k(g2,g2))
Parameters
----------
g1 : networkx.Graph
First graph.
g2 : networkx.Graph
Second graph.
Returns
-------
k : The similarity value between g1 and g2.
"""
return self.compare(g_1, g_2) / (np.sqrt(self.compare(g_1, g_1) *
self.compare(g_2, g_2)))

def compare_list(self, graph_list, verbose=False):
"""Compute the all-pairs kernel values for a list of graphs.
This function can be used to directly compute the kernel
matrix for a list of graphs. The direct computation of the
kernel matrix is faster than the computation of all individual
pairwise kernel values.
Parameters
----------
graph_list: list
A list of graphs (list of networkx graphs)
Return
------
K: numpy.array, shape = (len(graph_list), len(graph_list))
The similarity matrix of all graphs in graph_list.
"""
n = len(graph_list)
k = np.zeros((n, n))
for i in range(n):
for j in range(i, n):
k[i, j] = self.compare(graph_list[i], graph_list[j])
k[j, i] = k[i, j]

k_norm = np.zeros(k.shape)
for i in range(k.shape[0]):
for j in range(k.shape[1]):
k_norm[i, j] = k[i, j] / np.sqrt(k[i, i] * k[j, j])

return k_norm


ds_name = 'PAH'
datafile = '../../datasets/PAH/dataset.ds'
dataset, y = loadDataset(datafile, filename_y=None, extra_params=None)
gk_sp = GK_SP()
x = gk_sp.compare_list(dataset)
np.savez('../check_gm/' + ds_name + '.gm.jstsp', gms=x)

plt.imshow(x)
plt.colorbar()
plt.savefig('../check_gm/' + ds_name + '.gm.jstsp.eps', format='eps', dpi=300)
# print(np.transpose(x))
print('if symmetric: ', np.array_equal(x, np.transpose(x)))

print('diag: ', np.diag(x))
print('sum diag < 0.1: ', np.sum(np.diag(x) < 0.1))
print('min, max diag: ', min(np.diag(x)), max(np.diag(x)))
print('mean x: ', np.mean(np.mean(x)))

[lamnda, v] = eig(x)
print('min, max lambda: ', min(lamnda), max(lamnda))

Loading…
Cancel
Save