Browse Source

New translations shortest_path.py (French)

l10n_v0.2.x
linlin 4 years ago
parent
commit
4b0b9647ce
1 changed files with 33 additions and 33 deletions
  1. +33
    -33
      lang/fr/gklearn/kernels/shortest_path.py

+ 33
- 33
lang/fr/gklearn/kernels/shortest_path.py View File

@@ -26,11 +26,11 @@ class ShortestPath(GraphKernel):
def __init__(self, **kwargs):
GraphKernel.__init__(self)
self.__node_labels = kwargs.get('node_labels', [])
self.__node_attrs = kwargs.get('node_attrs', [])
self.__edge_weight = kwargs.get('edge_weight', None)
self.__node_kernels = kwargs.get('node_kernels', None)
self.__ds_infos = kwargs.get('ds_infos', {})
self._node_labels = kwargs.get('node_labels', [])
self._node_attrs = kwargs.get('node_attrs', [])
self._edge_weight = kwargs.get('edge_weight', None)
self._node_kernels = kwargs.get('node_kernels', None)
self._ds_infos = kwargs.get('ds_infos', {})


def _compute_gm_series(self):
@@ -39,7 +39,7 @@ class ShortestPath(GraphKernel):
iterator = tqdm(self._graphs, desc='getting sp graphs', file=sys.stdout)
else:
iterator = self._graphs
self._graphs = [getSPGraph(g, edge_weight=self.__edge_weight) for g in iterator]
self._graphs = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator]
# compute Gram matrix.
gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
@@ -51,7 +51,7 @@ class ShortestPath(GraphKernel):
else:
iterator = itr
for i, j in iterator:
kernel = self.__sp_do(self._graphs[i], self._graphs[j])
kernel = self._sp_do(self._graphs[i], self._graphs[j])
gram_matrix[i][j] = kernel
gram_matrix[j][i] = kernel
@@ -92,12 +92,12 @@ class ShortestPath(GraphKernel):
def _compute_kernel_list_series(self, g1, g_list):
# get shortest path graphs of g1 and each graph in g_list.
g1 = getSPGraph(g1, edge_weight=self.__edge_weight)
g1 = getSPGraph(g1, edge_weight=self._edge_weight)
if self._verbose >= 2:
iterator = tqdm(g_list, desc='getting sp graphs', file=sys.stdout)
else:
iterator = g_list
g_list = [getSPGraph(g, edge_weight=self.__edge_weight) for g in iterator]
g_list = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator]
# compute kernel list.
kernel_list = [None] * len(g_list)
@@ -106,7 +106,7 @@ class ShortestPath(GraphKernel):
else:
iterator = range(len(g_list))
for i in iterator:
kernel = self.__sp_do(g1, g_list[i])
kernel = self._sp_do(g1, g_list[i])
kernel_list[i] = kernel
return kernel_list
@@ -114,7 +114,7 @@ class ShortestPath(GraphKernel):
def _compute_kernel_list_imap_unordered(self, g1, g_list):
# get shortest path graphs of g1 and each graph in g_list.
g1 = getSPGraph(g1, edge_weight=self.__edge_weight)
g1 = getSPGraph(g1, edge_weight=self._edge_weight)
pool = Pool(self._n_jobs)
get_sp_graphs_fun = self._wrapper_get_sp_graphs
itr = zip(g_list, range(0, len(g_list)))
@@ -151,55 +151,55 @@ class ShortestPath(GraphKernel):
def _wrapper_kernel_list_do(self, itr):
return itr, self.__sp_do(G_g1, G_gl[itr])
return itr, self._sp_do(G_g1, G_gl[itr])
def _compute_single_kernel_series(self, g1, g2):
g1 = getSPGraph(g1, edge_weight=self.__edge_weight)
g2 = getSPGraph(g2, edge_weight=self.__edge_weight)
kernel = self.__sp_do(g1, g2)
g1 = getSPGraph(g1, edge_weight=self._edge_weight)
g2 = getSPGraph(g2, edge_weight=self._edge_weight)
kernel = self._sp_do(g1, g2)
return kernel
def _wrapper_get_sp_graphs(self, itr_item):
g = itr_item[0]
i = itr_item[1]
return i, getSPGraph(g, edge_weight=self.__edge_weight)
return i, getSPGraph(g, edge_weight=self._edge_weight)
def __sp_do(self, g1, g2):
def _sp_do(self, g1, g2):
kernel = 0
# compute shortest path matrices first, method borrowed from FCSP.
vk_dict = {} # shortest path matrices dict
if len(self.__node_labels) > 0:
if len(self._node_labels) > 0:
# node symb and non-synb labeled
if len(self.__node_attrs) > 0:
kn = self.__node_kernels['mix']
if len(self._node_attrs) > 0:
kn = self._node_kernels['mix']
for n1, n2 in product(
g1.nodes(data=True), g2.nodes(data=True)):
n1_labels = [n1[1][nl] for nl in self.__node_labels]
n2_labels = [n2[1][nl] for nl in self.__node_labels]
n1_attrs = [n1[1][na] for na in self.__node_attrs]
n2_attrs = [n2[1][na] for na in self.__node_attrs]
n1_labels = [n1[1][nl] for nl in self._node_labels]
n2_labels = [n2[1][nl] for nl in self._node_labels]
n1_attrs = [n1[1][na] for na in self._node_attrs]
n2_attrs = [n2[1][na] for na in self._node_attrs]
vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels, n1_attrs, n2_attrs)
# node symb labeled
else:
kn = self.__node_kernels['symb']
kn = self._node_kernels['symb']
for n1 in g1.nodes(data=True):
for n2 in g2.nodes(data=True):
n1_labels = [n1[1][nl] for nl in self.__node_labels]
n2_labels = [n2[1][nl] for nl in self.__node_labels]
n1_labels = [n1[1][nl] for nl in self._node_labels]
n2_labels = [n2[1][nl] for nl in self._node_labels]
vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels)
else:
# node non-synb labeled
if len(self.__node_attrs) > 0:
kn = self.__node_kernels['nsymb']
if len(self._node_attrs) > 0:
kn = self._node_kernels['nsymb']
for n1 in g1.nodes(data=True):
for n2 in g2.nodes(data=True):
n1_attrs = [n1[1][na] for na in self.__node_attrs]
n2_attrs = [n2[1][na] for na in self.__node_attrs]
n1_attrs = [n1[1][na] for na in self._node_attrs]
n2_attrs = [n2[1][na] for na in self._node_attrs]
vk_dict[(n1[0], n2[0])] = kn(n1_attrs, n2_attrs)
# node unlabeled
else:
@@ -210,7 +210,7 @@ class ShortestPath(GraphKernel):
return kernel
# compute graph kernels
if self.__ds_infos['directed']:
if self._ds_infos['directed']:
for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
if e1[2]['cost'] == e2[2]['cost']:
nk11, nk22 = vk_dict[(e1[0], e2[0])], vk_dict[(e1[1], e2[1])]
@@ -261,4 +261,4 @@ class ShortestPath(GraphKernel):
def _wrapper_sp_do(self, itr):
i = itr[0]
j = itr[1]
return i, j, self.__sp_do(G_gs[i], G_gs[j])
return i, j, self._sp_do(G_gs[i], G_gs[j])

Loading…
Cancel
Save