|
|
@@ -908,10 +908,12 @@ class MedianPreimageGenerator(PreimageGenerator): |
|
|
|
# compute distance in kernel space for set median. |
|
|
|
kernels_to_sm, _ = self._graph_kernel.compute(self.__set_median, self._dataset.graphs, **self._kernel_options) |
|
|
|
kernel_sm, _ = self._graph_kernel.compute(self.__set_median, self.__set_median, **self._kernel_options) |
|
|
|
kernels_to_sm = [kernels_to_sm[i] / np.sqrt(self.__gram_matrix_unnorm[i, i] * kernel_sm) for i in range(len(kernels_to_sm))] # normalize |
|
|
|
if self._kernel_options['normalize']: |
|
|
|
kernels_to_sm = [kernels_to_sm[i] / np.sqrt(self.__gram_matrix_unnorm[i, i] * kernel_sm) for i in range(len(kernels_to_sm))] # normalize |
|
|
|
kernel_sm = 1 |
|
|
|
# @todo: not correct kernel value |
|
|
|
gram_with_sm = np.concatenate((np.array([kernels_to_sm]), np.copy(self._graph_kernel.gram_matrix)), axis=0) |
|
|
|
gram_with_sm = np.concatenate((np.array([[1] + kernels_to_sm]).T, gram_with_sm), axis=1) |
|
|
|
gram_with_sm = np.concatenate((np.array([[kernel_sm] + kernels_to_sm]).T, gram_with_sm), axis=1) |
|
|
|
self.__k_dis_set_median = compute_k_dis(0, range(1, 1+len(self._dataset.graphs)), |
|
|
|
[1 / len(self._dataset.graphs)] * len(self._dataset.graphs), |
|
|
|
gram_with_sm, withterm3=False) |
|
|
@@ -919,9 +921,11 @@ class MedianPreimageGenerator(PreimageGenerator): |
|
|
|
# compute distance in kernel space for generalized median. |
|
|
|
kernels_to_gm, _ = self._graph_kernel.compute(self.__gen_median, self._dataset.graphs, **self._kernel_options) |
|
|
|
kernel_gm, _ = self._graph_kernel.compute(self.__gen_median, self.__gen_median, **self._kernel_options) |
|
|
|
kernels_to_gm = [kernels_to_gm[i] / np.sqrt(self.__gram_matrix_unnorm[i, i] * kernel_gm) for i in range(len(kernels_to_gm))] # normalize |
|
|
|
if self._kernel_options['normalize']: |
|
|
|
kernels_to_gm = [kernels_to_gm[i] / np.sqrt(self.__gram_matrix_unnorm[i, i] * kernel_gm) for i in range(len(kernels_to_gm))] # normalize |
|
|
|
kernel_gm = 1 |
|
|
|
gram_with_gm = np.concatenate((np.array([kernels_to_gm]), np.copy(self._graph_kernel.gram_matrix)), axis=0) |
|
|
|
gram_with_gm = np.concatenate((np.array([[1] + kernels_to_gm]).T, gram_with_gm), axis=1) |
|
|
|
gram_with_gm = np.concatenate((np.array([[kernel_gm] + kernels_to_gm]).T, gram_with_gm), axis=1) |
|
|
|
self.__k_dis_gen_median = compute_k_dis(0, range(1, 1+len(self._dataset.graphs)), |
|
|
|
[1 / len(self._dataset.graphs)] * len(self._dataset.graphs), |
|
|
|
gram_with_gm, withterm3=False) |
|
|
|